The significant volume of existing buildings and ongoing annual construction of infrastructure underscore the vast potential for integrating large-scale energy-storage solutions into these structures. Herein, we propose an innovative approach for developing structural and scalable energy-storage systems by integrating safe and cost-effective zinc-ion hybrid supercapacitors into cement mortar, which is the predominant material used for structural purposes. By performing air entrainment and leveraging the adverse reaction of the ZnSO electrolyte, we can engineer an aerated cement mortar with a multiscale pore structure that exhibits dual functionality: effective ion conductivity in the form of a cell separator and a robust load-bearing capacity that contributes to structural integrity. Consequently, a hybrid supercapacitor building block consisting of a tailored cement mortar, zinc metal anode and active carbon cathode demonstrates exceptional specific energy density (71.4 Wh kg at 68.7 W kg), high areal energy density (2.0 Wh m at 1.9 W m), favorable cycling stability (∼92% capacity retention after 1000 cycles) and exceptional safety (endurance in a 1-hour combustion test). By demonstrating the scalability of the structural energy-storage system coupled with solar energy generation, this new device exhibits great potential to revolutionize energy-storage systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444079 | PMC |
http://dx.doi.org/10.1093/nsr/nwae309 | DOI Listing |
Materials (Basel)
December 2024
Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland.
In order to improve the performance of cement mortar (Portland cement), it was enriched with triclosan, hypochlorous acid, silver nanoparticles and graphene oxide. Cement mortar is used, among other things, to fill the gaps between the tiles of building porcelain stoneware. A number of structural, mechanical and biological tests were carried out.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
Alite calcium sulfoaluminate (ACSA) cement is an innovative and environmentally friendly cement compared to ordinary Portland cement (OPC). The synthesis and hydration of ACSA clinkers doped with gradient sulfur were investigated. The clinker compositions and hydrated pastes were characterized by X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) to analyze its mineral contents, hydration products, heat release, pore structure, and microstructure.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland.
One widely used method to predict concrete strength development based on temperature variations during curing is the equivalent maturity time (te) method. This method uses the activation energy (Ea) as its key parameter, which reflects the cement's sensitivity to temperature. However, research shows that the Ea value varies depending on factors such as cement type, water/cement ratio, temperature, and additives.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Construction Technology Research Center, Construction Division, Korea Conformity Laboratories, 199, Gasan Digital 1-ro, Geumcheon-gu, Seoul 08503, Republic of Korea.
This study investigates the tensile behavior of carbon-fiber-reinforced polymer (CFRP) and textile-reinforced mortar (TRM) under various design variables to enhance understanding and application in construction structures. TRM reinforced with CFRP grids is highly effective for strengthening existing structures due to its lightweight nature, durability, ease of installation, and corrosion resistance. The research aims to evaluate how design parameters such as the CFRP grid type, mortar matrix strength (influenced by the water-to-cement ratio), specimen length, and grid width affect TRM's mechanical properties.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China.
In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!