Support Screening to Shape Propane Dehydrogenation SnPt-Based Catalysts.

Ind Eng Chem Res

Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.

Published: September 2024

Propane dehydrogenation reaction (PDH) is an extremely attractive way to produce propylene; however, the catalysts often lead to byproduct formation and suffer from deactivation. This research focuses on the development of efficient Pt/Sn-based shaped catalysts by utilizing Mg-modified mesoporous silica, sepiolite (natural SiMgO mesoporous clay), and sepiolite/bentonite/alumina as supports with the aim of achieving superior stability and selectivity for industrial propylene production by PDH. The catalysts were prepared by sequential impregnation of the supports with the corresponding solutions of tin chloride and platinum chloride, by obtaining a nominal loading of 0.7 wt % of Sn and 0.5 wt % of Pt. A range of analytical techniques were used to characterize the catalysts, including X-ray diffraction, nitrogen physisorption isotherms, Hg intrusion porosimetry, thermogravimetric analyses, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The basicity of the catalysts was assessed using carbon dioxide temperature-programmed desorption (CO-TPD). The results confirm that the support material plays a critical role in catalyst performance; in particular, the presence of weak basic sites, due to magnesium addition, improved selectivity to propylene and reduced coke formation. Catalytic pellets of Sn-Pt supported on macroporous sepiolite or sepiolite and bentonite-modified mesoporous alumina performed comparably with propane conversion very close to thermodynamic equilibrium and selectivity to propylene above 95%. The latter support led to improved stability and was regenerated at milder temperatures, making it suitable for industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440506PMC
http://dx.doi.org/10.1021/acs.iecr.3c04089DOI Listing

Publication Analysis

Top Keywords

propane dehydrogenation
8
selectivity propylene
8
catalysts
6
support screening
4
screening shape
4
shape propane
4
dehydrogenation snpt-based
4
snpt-based catalysts
4
catalysts propane
4
dehydrogenation reaction
4

Similar Publications

Enhancing Stability and Activity of Fe-based Catalysts for Propane Dehydrogenation via Anchoring Isolated Fe-Cl Sites.

ChemSusChem

January 2025

Beijing Jiaotong University, School of Science, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China, 100044, Beijing, CHINA.

The eco-friendly features and desirable catalytic activities of Fe-based catalysts make them highly promising for propane dehydrogenation (PDH). However, simultaneously improving their stability and activity remains a challenge. Here, we present a strategy to address these issues synergistically by anchoring single-atom Fe-Cl sites in Al3+ vacancies of Al2O3.

View Article and Find Full Text PDF

Effects of Cofeeding Hydrogen on Propane Dehydrogenation Catalyzed by Isolated Iron Sites Incorporated into Dealuminated BEA.

J Am Chem Soc

January 2025

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.

Iron sites dispersed on nonacidic siliceous supports have been reported to be catalytically active for propane dehydrogenation (PDH), yet the precise relationship between site structure and catalytic activity remains elusive. This study provides a comprehensive understanding of the catalytic performance of iron supported on dealuminated BEA (DeAlBEA) zeolites for PDH. Using XAS, UV-vis, and IR spectroscopy of adsorbed pyridine and deuterated acetonitrile, it was found that, at an Fe/Al of 0.

View Article and Find Full Text PDF

C-H bond activation is the first step in manufacturing chemical products from readily available light alkane feedstock and typically proceeds via carbon-intensive thermal processes. The ongoing emphasis on decarbonization via electrification motivates low-temperature electrochemical alternatives that could lead to sustainable chemicals production. Platinum (Pt) electrocatalysts have shown activity towards reacting alkanes; however, little is known about propane electrocatalytic activation and conditions suitable for enabling selective oxidation to valuable products.

View Article and Find Full Text PDF

Calculation of Adsorbate Free Energy Using the Damping Function Method.

J Chem Theory Comput

December 2024

Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan 423000, P. R. China.

Adsorbate free energies are important parameters in surface chemistry and catalysis. Because of its simplicity, the harmonic oscillator (HO) model remains the most widely used method for calculating adsorbate free energy in many fields, including microkinetic modeling. However, it is well-known that the HO method is ineffective for weak adsorption.

View Article and Find Full Text PDF

Plasma-Catalyst Dynamics: Nonthermal Activation of Strong Metal-Support Interactions.

J Am Chem Soc

December 2024

Department of Chemical and Biomolecular Engineering, 250 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Nonthermal plasma-surface interactions enable transformative advancements in green chemistry, healthcare, materials processing, pollution abatement, and the ever-growing area of plasma catalysis. In the context of plasma catalysis, the fate of the active sites during plasma treatment has remained enigmatic, and observation of low-temperature plasma-catalyst events has been challenging. The induction of strong metal-support interactions (SMSI) through high-temperature hydrogen treatment is a well-documented and established, yet limited, method to impact selectivity and stability of noble metal catalysts on reducible supports.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!