F-FDG PET/CT is an integral part of modern-day practice, especially in the management of individuals presenting with malignant processes. The use of this novel imaging modality in oncology has been rapidly evolving. However, due to its detection of cellular metabolism, it is not truly tumor specific. F-FDG is also used in the detection of infective and inflammatory disorders. One of the challenges experienced with F-FDG PET/CT imaging is the correct differentiation of abnormal uptake that is potentially pathologic, from physiological uptake. Imaging readers, particularly the nuclear physicians, therefore need to be aware of normal physiological variants of uptake, as well as potential pitfalls and artifacts when imaging with F-FDG. This is true for musculoskeletal uptake, where more than often, infective and inflammatory processes should not be mistaken for malignancy. This article aims to provide a pictorial review and analysis of cases that depict musculoskeletal, infective, and inflammatory uptake as normal variants, pitfalls, and artifacts on F-FDG PET/CT imaging. The impact of this article is to help in the minimizing of poor imaging quality, erroneous interpretations and diminishes misdiagnoses that may impact on the adequate management of patients with undesirable consequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440872 | PMC |
http://dx.doi.org/10.3389/fnume.2022.847810 | DOI Listing |
J Nucl Med Technol
January 2025
Department of Medical Oncology and Haematology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India.
Extragonadal choriocarcinoma in men is an extremely rare and highly aggressive malignancy. Inconclusive biopsies due to a high necrotic component often delay diagnosis. Here is such a case, in which suggestive imaging findings on [F]FDG PET/CT, a raised level of serum β-human chorionic gonadotropin, and gynecomastia clinched the diagnosis.
View Article and Find Full Text PDFJ Nucl Med Technol
January 2025
Department of Nuclear Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
This study aimed to validate the effectiveness of MotionFree (MF) in the abdominal region using 2 different PET/CT scanners to determine how to use MF efficiently. All 198 patients underwent respiratory-gated F-FDG PET/CT with MF. Imaging was performed using Discovery MI (DMI) and Discovery IQ (DIQ) PET/CT scanners, and all data were divided into 2 groups in each category (abdominal: upper and lower abdomen, lesion size, <20 mm and ≥20 mm; scanner group: DMI and DIQ).
View Article and Find Full Text PDFEur J Surg Oncol
January 2025
Division of Surgical Oncology, Department of Surgery, Northwell Health, New Hyde Park, NY, USA; Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:
Background: F-FDG PET-CT-based host metabolic (PETMet) profiling of non-tumor tissue is a novel approach to incorporate the patient-specific response to cancer into clinical algorithms.
Materials And Methods: A prospectively maintained institutional database of gastroesophageal cancer patients was queried for pretreatment PET-CTs, demographics, and clinicopathologic variables. F-FDG PET avidity was measured in 9 non-tumor tissue types (liver, spleen, 4 muscles, 3 fat locations).
Ann Hematol
January 2025
Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline F-FDG PET/CT (bPET/CT) of classical Hodgkin's Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Department of Nuclear Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Purpose: Radionuclide-labeled fibroblast activation protein inhibitor (FAPI) is an emerging tumor tracer. We sought to assess the uptake and diagnostic performance of F-FAPI-42 PET/CT compared with simultaneous 2-deoxy-2[F]fluoro-D-glucose (F-FDG) PET/CT in primary and metastatic lesions in patients with malignant digestive system neoplasms and to determine the potential clinical benefit.
Procedures: Forty-two patients (men = 30, women = 12, mean age = 56.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!