Background: Apatinib, a tyrosine-kinase inhibitor that targets the vascular endothelial growth factor receptor 2, contributes to the inhibition of angiogenesis. Vinorelbine, a semisyn-thetic vinca alkaloid, primarily inhibits metaphase mitosis of cancer cells through its interactions with tubulin. This study aimed to evaluate whether apatinib combined with vinorelbine was ef-fective and safe for refractory human epidermal growth factor receptor 2 (HER2)-negative breast cancer patients who failed taxanes and/or anthracycline and analyze the possible mechanism of drug resistance through metabolomic analysis.
Methods: Eligible patients were HER2-negative, inoperable, locally advanced, or metastatic breast cancer patients who progressed after at least one chemotherapy regimen in this present prospective phase II study. Patients took oral apatinib (250-500 mg/day) plus intravenous infusion of vinorelbine (25 mg/m2 on day 1, day 8 at 3-week intervals). Objective response rate (ORR) was our primary endpoint, while disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and toxicity were our secondary endpoints. The exploratory purpose was to identify biomarkers or drug resistance mechanisms through metabolomics changes before and after the combination therapy.
Results: Between September, 2019 and June, 2022, a total of 34 patients were included. ORR and DCR were 32.4% (11/34) and 85.3% (29/34), respectively. The median PFS was 5.0 months (95% CI, 3.766-6.234), while the median OS was 13.0 months (95% CI, 8.714-17.286). Side effects included hematologic toxicity, gastrointestinal reaction, and sinus tachycardia, which were mild to moderate. The mainly disturbed metabolic pathways were the cAMP signaling pathway, the alanine/aspartate/glutamate metabolism, the central carbon metabolism in cancer, the beta-alanine metabolism, the butanoate metabolism, and the glyoxylate and dicarboxylate metabolism, which may lead to the resistance of patients to this combination therapy.
Conclusion: Apatinib combined with vinorelbine is effective and safe in patients with locally advanced or metastatic refractory HER2-negative breast cancer. The findings of this study con-tribute to a better understanding of the metabolic effect of apatinib and vinorelbine therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0115680096303785240822155217 | DOI Listing |
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFAnn Surg Oncol
December 2024
Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
Background: Benzodiazepines are the third most misused medication, with many patients having their first exposure during a surgical episode. We sought to characterize factors associated with new persistent benzodiazepine use (NPBU) among patients undergoing cancer surgery.
Patients And Methods: Patients who underwent cancer surgery between 2013 and 2021 were identified using the IBM-MarketScan database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!