Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The solid pattern is a highly malignant subtype of lung adenocarcinoma. In the current era of transitioning from lobectomy to sublobar resection for the surgical treatment of small lung cancers, preoperative identification of this subtype is highly important for patient surgical approach selection and long-term prognosis.
Methods: A total of 1489 patients with clinical stage IA1-2 primary lung adenocarcinoma were enrolled. Based on patient clinical characteristics and lung imaging features obtained via deep learning, highly correlated diagnostic factors were identified through LASSO regression and decision tree analysis. Subsequently, a logistic model and nomogram were constructed. A restricted cubic spline (RCS) was used to calculate the optimal inflection point of quantitative data and the differences between the groups.
Results: The three-dimensional proportion of solid component (PSC), sex, and smoking status was identified as being highly correlated diagnostic factors for solid predominant adenocarcinoma. The logistic model had good prediction efficiency, and the area under the ROC curve was 0.85. Decision curve analysis demonstrated that the application of diagnostic factors can improve patient outcomes. RCS analysis indicated that the proportion of solid adenocarcinomas increased by 4.6 times when the PSC was ≥72%. A PSC of 72% is a good cutoff point.
Conclusion: The preoperative diagnosis of solid-pattern adenocarcinoma can be confirmed by typical imaging features and clinical characteristics, assisting the thoracic surgeon in developing a more precise surgical plan.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543272 | PMC |
http://dx.doi.org/10.1111/1759-7714.15448 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!