ATP promotes protein coacervation through conformational compaction.

J Mol Cell Biol

State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences, Wuhan 430071, China.

Published: October 2024

ATP has been recognized as a hydrotrope in the phase separation process of intrinsically disordered proteins (IDPs). Surprisingly, when using the disordered RG/RGG-rich motif from HNRNPG protein as a model system, we discover a biphasic relationship between the ATP concentration and IDP phase separation. We show that at a relatively low ATP concentration, ATP dynamically interacts with the IDP, which neutralizes protein surface charges, promotes intermolecular interactions, and consequently promotes phase separation. We further demonstrate that ATP induces a compact conformation of the IDP, accounting for the reduced solvent exchange rate and lower compression ratio during phase separation. As ATP concentration increases, its hydrotropic properties emerge, leading to the dissolution of the phase-separated droplets. Our finding uncovers a complex mechanism by which ATP molecules modulate the structure, interaction, and phase separation of IDPs, and accounts for the distinct phase separation behaviors for the charge-rich RGG motif and other low-complexity IDPs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmcb/mjae038DOI Listing

Publication Analysis

Top Keywords

phase separation
24
atp concentration
12
atp
8
phase
6
separation
6
atp promotes
4
promotes protein
4
protein coacervation
4
coacervation conformational
4
conformational compaction
4

Similar Publications

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

Size exclusion chromatography-gradient (SEC-Gradient) is a powerful technique to separate polymers by their chemical composition. The stationary phase is first conditioned with a gradient from adsorli to desorli, and polymer samples are injected after the gradient in SEC conditions. Since its first description in 2011 by Schollenberger and Radke, it has never been applied to block copolymers.

View Article and Find Full Text PDF

This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties.

View Article and Find Full Text PDF

Condensation and Synchronization in Aligning Chiral Active Matter.

Phys Rev Lett

December 2024

Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.

We show that spontaneous density segregation in dense systems of aligning circle swimmers is a condensation phenomenon at odds with the phase separation scenarios usually observed in two-dimensional active matter. The condensates, which take the form of vortices or rotating polar packets, can absorb a finite fraction of the particles in the system, and keep a finite or slowly growing size as their mass increases. Our results are obtained both at particle and continuous levels.

View Article and Find Full Text PDF

Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!