Despite an undetectable plasma viral load as a result of antiretroviral therapy, HIV-1-infected individuals with poor immune reconstitution harbor infectious HIV-1 within their platelets. Megakaryocytes, as platelet precursors, are the likely cellular origin of these HIV-1-containing platelets. To investigate the mechanisms that allow megakaryocytes to support HIV-1 infection, we established in vitro models of viral infection using hematopoietic stem cell-derived megakaryocytes and the megakaryocytic MEG-01 cell line. We observed HIV-1 DNA provirus integration into the megakaryocyte cell genome, self-limiting virus production, and HIV-1 protein and RNA compartmentalization, which are hallmarks of HIV-1 infection in myeloid cells. In addition, following HIV-1 infection of megakaryocyte precursors, the expression of interferon-induced transmembrane protein 3 (IFITM3), an antiviral factor constitutively expressed in megakaryocytes, was inhibited in terminally differentiated HIV-1-infected megakaryocytes. IFITM3 knockdown in MEG-01 cells prior to infection led to enhanced HIV-1 infection, indicating that IFITM3 acts as an HIV-1 restriction factor in megakaryocytes. Together, these findings indicate that megakaryocyte precursors are susceptible to HIV-1 infection, leading to terminally differentiated megakaryocytes harboring virus in a process regulated by IFITM3. Megakaryocytes may thus constitute a neglected HIV-1 reservoir that warrants further study in order to develop improved antiretroviral therapies and to facilitate HIV-1 eradication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jmcb/mjae042 | DOI Listing |
Background: Recent declines in HIV incidence among adolescent girls and young women (AGYW) in Africa are often attributed to the expansion of biomedical interventions such as antiretroviral therapy and voluntary medical male circumcision. However, changes in sexual behaviour may also play a critical role. Understanding the relative contributions of these factors is essential for developing strategies to sustain and further reduce HIV transmission.
View Article and Find Full Text PDFSterile alpha motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in non-dividing cells by reducing the intracellular dNTP pool. SAMHD1 enhances spontaneous apoptosis in cells, but its effects on HIV-1-induced apoptosis and the underlying mechanisms remain unknown. Here we uncover a new mechanism by which SAMHD1 enhances HIV-1-induced apoptosis in monocytic cells through the mitochondrial pathway.
View Article and Find Full Text PDFZhonghua Yu Fang Yi Xue Za Zhi
January 2025
Department of AIDS/STD Control and Prevention, Nanjing Municipal Center for Disease Control and Prevention, Nanjing210003, China.
To analyze the transmission characteristics of newly reported HIV-infected students aged ≥18 years in Nanjing City from 2016 to 2022 and provide evidence for AIDS publicity and intervention among young students. The pol region sequences of newly reported HIV-infected students and non-student HIV-infected individuals in Nanjing City from 2016 to 2022 were collected, and the BLAST tool was used to search the published global non-Nanjing reported HIV infection sequences in the LANL HIV database. The basic molecular transmission network and regional molecular transmission network were constructed using the HIV-TRACE in a pairwise genetic distance threshold of 1.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
HIV-associated neurocognitive disorders (HAND) and viral reservoirs in the brain remain a significant challenge. Despite their importance, the mechanisms allowing HIV-1 entry and replication in the central nervous system (CNS) are poorly understood. Here, we show that α-synuclein and (to a lesser extent) Aβ fibrils associated with neurological diseases enhance HIV-1 entry and replication in human T cells, macrophages, and microglia.
View Article and Find Full Text PDFJ Biol Chem
January 2025
National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India. Electronic address:
MicroRNAs are a part of the integral regulatory mechanisms found in eukaryotic cells that help in maintaining cellular homeostasis by modulating the expression of target genes. However, during stress conditions like viral infection, the expression profile of the microRNAs change, thereby directly modulating the expression of viral genes and/or indirectly targeting the virus by regulating the host genes. The present study intends to identify previously uncharacterized cellular microRNAs, which are significantly modulated upon HIV-1 infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!