Improving working memory by electrical stimulation and cross-frequency coupling.

Mol Brain

Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.

Published: October 2024

Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446076PMC
http://dx.doi.org/10.1186/s13041-024-01142-1DOI Listing

Publication Analysis

Top Keywords

working memory
8
theta gamma
8
gamma oscillations
8
stimulation
6
improving working
4
memory electrical
4
electrical stimulation
4
stimulation cross-frequency
4
cross-frequency coupling
4
coupling working
4

Similar Publications

Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle.

View Article and Find Full Text PDF

Recent research has revealed the widespread effects of emotion on cognitive functions and memory. However, the influence of emotional valence on verbal short-term memory remains largely unexplored, especially in children. This study measured the effect of emotional valence on word immediate serial recall in 4-6-year-old French children ( = 124).

View Article and Find Full Text PDF

Introduction: , a protein kinase located on human chromosome 21, plays a role in postembryonic neuronal development and degeneration. Alterations to have been consistently associated with cognitive functioning and neurodevelopmental disorders (e.g.

View Article and Find Full Text PDF

Objective: To describe the relationship between executive functions (EF) and symptom's severity, behavioral problems, and adaptive functioning in autistic preschoolers.

Method: Seventy-six autistic preschoolers (age-range: 37-72 months; SD: 8.67 months) without intellectual disability were assessed.

View Article and Find Full Text PDF

Objective: To predict the areas of snail spread in Anhui Province from 1977 to 2023 using machine learning models, and to compare the effectiveness of different machine learning models for prediction of areas of snail spread, so as to provide insights into investigating the trends in areas of snail spread.

Methods: Data pertaining to snail spread in Anhui Province from 1977 to 2023 were collected and a database was created. Five machine learning models were created using the software Matlab R2019b, including support vector regression (SVR), nonlinear autoregressive (NAR) neural network, back propagation (BP) neural network, gated recurrent unit (GRU) neural network and long short-term memory (LSTM) neural network models, and the model fitting effect was evaluated with mean absolute error (MAE), root mean squared error (RMSE) and coefficient of determination ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!