Background: Lower back pain (LBP) is a disability that affects a large proportion of the population and treatment for this condition has been shifting towards a more individualized, patient-centered approach. There has been a recent uptake in the utilization and implementation of wearable sensors that can administer biofeedback in various industrial, clinical, and performance-based settings. Despite this, there is a strong need to investigate how wearable sensors can be used in a sensorimotor (re)training approach, including how sensory biofeedback from wearable sensors can be used to improve measures of spinal motor control and proprioception.
Research Question: The purpose of this scoping review was to examine the wide range of wearable sensor-mediated biofeedback frameworks currently being utilized to enhance spine posture and motor function.
Methods: A comprehensive scoping review was conducted in adherence with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines extension for Scoping Reviews (PRISMA-ScR) across the following databases: Embase, PubMed, Scopus, Cochrane, and IEEEXplore. Articles related to wearable biofeedback and spine movement were reviewed dated from 1980 - 2020. Extracted data was collected as per a predetermined checklist including the type, timing, trigger, location, and magnitude of sensory feedback being applied to the body.
Results: A total of 23 articles were reviewed and analysed. The most used wearable sensor to inform biofeedback were inertial measurement units (IMUs). Haptic (vibrotactile) feedback was the most common sensory stimulus. Most studies used an instantaneous online trigger to initiate sensory feedback derived from information pertaining to gross lumbar angles or the absolute orientations of the thorax or pelvis.
Conclusions: This is the first study to review wearable sensor-derived sensory biofeedback to modulate spine motor control. Although the type of wearable sensor and feedback were common, this study highlights the lack of consensus regarding the timing and structure of sensory feedback, suggesting the need to optimize any sensory feedback to a specific use case. The findings from this study help to improve the understanding surrounding the ecological utility of wearable sensor-mediated biofeedback in industrial, clinical, and performance settings to enhance the sensorimotor control of the lumbar spine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446096 | PMC |
http://dx.doi.org/10.1186/s12891-024-07867-3 | DOI Listing |
Alzheimers Dement
December 2024
University of Strathclyde, Glasgow, Scotland, United Kingdom.
Background: The increasing significance of self-management in dementia care arises from earlier diagnosis, improved understanding of patient-modifiable factors, and advancements in treatments. The growing acceptance of patient care planning, especially self-management, is further supported by health professionals and public health initiatives aimed at extending healthspan.
Method: This systematic review evaluates the efficacy of self-management tools in enhancing the quality of life for adults with dementia and mitigating undesirable behaviours associated with the condition.
Alzheimers Dement
December 2024
University of Minnesota Duluth, Duluth, MN, USA.
Background: The rising demand for alternative dementia assessments, fueled by healthcare workforce shortages and the growing population of individuals affected with dementia, necessitates innovative approaches to address accessibility, logistics, and diverse populations. The utilization of robots in cognitive assessments emerges as a promising solution, promising efficiency and engagement, while navigating the complex landscape of dementia care challenges.
Method: Existing cognitive assessment tools were examined to develop a humanoid robot to deliver cognitive assessment.
Alzheimers Dement
December 2024
University of Minnesota Duluth, Duluth, MN, USA.
Background: The rising demand for alternative dementia assessments, fueled by healthcare workforce shortages and the growing population of individuals affected with dementia, necessitates innovative approaches to address accessibility, logistics, and diverse populations. The utilization of robots in cognitive assessments emerges as a promising solution, promising efficiency and engagement, while navigating the complex landscape of dementia care challenges.
Method: Existing cognitive assessment tools were examined to develop a humanoid robot to deliver cognitive assessment.
Brain Behav
January 2025
School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Background: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.
Purpose: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.
Methods: This cross-sectional study recruited 29 healthy young adults.
Small Methods
January 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!