Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidized phospholipids (oxPLs) are generated during innate immunity and inflammation, where they play a variety of biological roles, including regulation of autoimmunity and coagulation. Some are generated by enzymatic reactions, leading to stereo- and regiospecificity, while many others can be formed through nonenzymatic oxidation and truncation and can be used as biomarkers of oxidative stress. Mass spectrometry methods have been developed over many years for oxPL analysis, which can provide robust estimations of molecular species and amounts, where standards are available. Here we present a method used for the analysis of enzymatically-generated oxPL (eoxPL), which allows quantification of mono-hydroxy oxylipin-containing species. We also show profiling of many other partially characterized structures in tissue samples and provide typical chromatograms obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-4116-3_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!