Embryo abortion at the heart-shaped stage is the main reason for the failure of interspecific hybridization of hydrangea, and salicylic acid plays a key role during embryo abortion. Difficulties in obtaining seeds from interspecific hybridization between Hydrangea macrophylla and H. arborescens had severely restricted the process of breeding new hydrangea varieties. To clarify the cause of reproductive barriers, an interspecific hybridization was made between H. macrophylla 'Endless Summer' (female parent) and H. arborescens 'Annabelle' (male parent). The results showed that both parents' floral organs developed normally, 'Annabelle' had high pollen viability (84.83% at 8 h after incubation), and the pollen tube could enter into the ovule of 'Endless Summer' at 72 h after pollination. Therefore, the pre-fertilization barrier was not the main reason for the failure of interspecific hybridization. However, observation of the embryo development by paraffin sections showed that the embryo was aborted at the heart-shaped stage. In addition, salicylic acid (SA) content was significantly higher (fourfold, P < 0.01) at 21 days after pollination (DAP) as compared to that of 17 DAP, which means SA may be closely correlated with embryo development. A total of 957 metabolites were detected, among which 78 were significantly different. During the embryo abortion, phenylpropanoids and polyketides were significantly down-regulated, while organic oxygen compounds were significantly up-regulated. Further analysis indicated that the metabolic pathway was enriched in the shikimic acid biosynthesis pathway, which suggests that more SA was synthesized. Taken together, it can be reasonably speculated that SA plays a key role leading to embryo abortion underlying the interspecific hybridization between Hydrangea macrophylla and H. arborescens. The result is helpful to direct the breeding of hydrangea through distant hybridization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-024-03341-5 | DOI Listing |
Tree Physiol
January 2025
Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Biology, Aarhus University, Aarhus C, Denmark.
Understanding interspecific introgressive hybridisation and the biological significance of introgressed variation remains an important goal in population genomics. European (Anguilla anguilla) and American eel (A. rostrata) represent a remarkable case of hybridisation.
View Article and Find Full Text PDFBreed Sci
September 2024
Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan.
The introgression of heterologous genomes through interspecific hybridization offers a great opportunity to expand the gene pool of crops, thereby broadening the traits that can be targeted for improvement. The introgression of C genomic regions carrying desirable traits from (AACC) into the diploid (AA) via homoeologous recombination (HR) has been commonly used. However, the precise identification of HR sites remains a significant challenge, limiting the practical application of genome introgression via HR in breeding programs.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
Interspecific hybridization between relative species (with a diploid genome designated as TT), (EE) and (NN) and the successive polyploidization with transitions from sexuality to asexuality experienced by triploid hybrids likely influence their chromosomal rearrangements, including rearrangements of ribosomal DNA (rDNA) distribution patterns. Previously, we documented distinct karyotypic differences: exhibited bi-armed chromosomes while showed uni-armed chromosomes with rDNA-positive hybridization signals, respectively. In this study, fluorescence in situ hybridization (FISH) with rDNA and rDNA probes was used to analyze and compare chromosomal distribution patterns of rDNAs in clonally reproduced triploid hybrids of different genomic constitutions ETT, ETN, EEN and EET (referred to using acronyms denoting the haploid genomes of their parent species), and their parental species.
View Article and Find Full Text PDFFront Plant Sci
January 2025
CSIRO, Glen Osmond, Adelaide, SA, Australia.
Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!