A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved longevity of actomyosin in vitro motility assays for sustainable lab-on-a-chip applications. | LitMetric

In the in vitro motility assay (IVMA), actin filaments are observed while propelled by surface-adsorbed myosin motor fragments such as heavy meromyosin (HMM). In addition to fundamental studies, the IVMA is the basis for a range of lab-on-a-chip applications, e.g. transport of cargoes in nanofabricated channels in nanoseparation/biosensing or the solution of combinatorial mathematical problems in network-based biocomputation. In these applications, prolonged myosin function is critical as is the potential to repeatedly exchange experimental solutions without functional deterioration. We here elucidate key factors of importance in these regards. Our findings support a hypothesis that early deterioration in the IVMA is primarily due to oxygen entrance into in vitro motility assay flow cells. In the presence of a typically used oxygen scavenger mixture (glucose oxidase, glucose, and catalase), this leads to pH reduction by a glucose oxidase-catalyzed reaction between glucose and oxygen but also contributes to functional deterioration by other mechanisms. Our studies further demonstrate challenges associated with evaporation and loss of actin filaments with time. However, over 8 h at 21-26 °C, there is no significant surface desorption or denaturation of HMM if solutions are exchanged manually every 30 min. We arrive at an optimized protocol with repeated exchange of carefully degassed assay solution of 45 mM ionic strength, at 30 min intervals. This is sufficient to maintain the high-quality function in an IVMA over 8 h at 21-26 °C, provided that fresh actin filaments are re-supplied in connection with each assay solution exchange. Finally, we demonstrate adaptation to a microfluidic platform and identify challenges that remain to be solved for real lab-on-a-chip applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445438PMC
http://dx.doi.org/10.1038/s41598-024-73457-xDOI Listing

Publication Analysis

Top Keywords

vitro motility
12
lab-on-a-chip applications
12
actin filaments
12
motility assay
8
functional deterioration
8
8 h 21-26
8
21-26 °c
8
assay solution
8
improved longevity
4
longevity actomyosin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!