Gold nanodendrite (AuND) is a type of gold nanoparticles with dendritic or branching structures that offers advantages such as large surface area and high conductivity to improve electrocatalytic performance of electrochemical sensors. AuND structures can be synthesized using electrodeposition method utilizing cysteine as growth directing agent. This method can simultaneously synthesize and integrate the gold nanostructures on the surface of the electrode. We conducted a comprehensive study on the synthesis of AuND on screen-printed carbon electrode (SPCE)-based working electrode, focusing on the optimization of electrodeposition parameters, such as applied potential, precursor solution concentration, and deposition time. The measured surface oxide reduction peak current and electrochemical surface area from cyclic voltammogram were used as the optimization indicators. We confirmed the growth of dendritic gold nanostructures across the carbon electrode surface based on FESEM, EDS, and XRD characterizations. We applied the SPCE/AuND electrode as a nonenzymatic sensor on ascorbic acid (AA) and obtained detection limit of 16.8 μM, quantification limit of 51.0 μM, sensitivity of 0.0629 μA μM, and linear range of 180-2700 μM (R value = 0.9909). Selectivity test of this electrode against several interferences, such as uric acid, dopamine, glucose, and urea, also shows good response in AA detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445493 | PMC |
http://dx.doi.org/10.1038/s41598-024-69970-8 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.
View Article and Find Full Text PDFNano Lett
January 2025
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China.
Solid-state metallic potassium batteries (SSMPBs) afresh have attracted incremental attention because of their potential to supplement solid-state metallic lithium batteries. However, SSMPBs suffer poor electrochemical performances due to the low ionic conductivity of solid electrolytes and huge electrode/electrolyte interfacial resistance. Herein, high-rate SSMPBs are achieved by in situ ring-opening polymerization of 1,3-dioxolane with succinonitrile as a plasticizer and Al(OTf) as the catalyst, where the succinonitrile enables short-chain polyether electrolytes.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.
Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure.
View Article and Find Full Text PDFChempluschem
January 2025
Université de Tours: Universite de Tours, Department of chemistry, 1 JARDIN MONTAIGNE 37300 JOUE LES TOURS, 37300, JOUE LES TOURS, FRANCE.
In this paper, microporous Zn-based zeolitic imidazolate framework with the sodalite cage structure (SOD-ZIF-8) was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and N2 adsorption were employed to characterize the synthesized material. An ultra-sensitive electrochemical sensor based on highly dispersed bimetallic Ni-Pt nanoparticles immobilized on zeolitic metal-organic framework ZIF-8 for dopamine quantification is introduced for the first time.
View Article and Find Full Text PDFACS Nano
January 2025
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology University, Pohang 37666, Republic of Korea.
Lattice volume changes in Li-ion batteries active materials are unavoidable during electrochemical cycling, posing significant engineering challenges from the particle to the electrode level. In this study, we present an elastic framework coating designed to absorb and reversibly release strain energy associated with particle volume changes, thereby enhancing mechanical resilience at both the particle and electrode levels. This framework, composed of multiwalled carbon nanotubes (MWCNTs), is applied to nickel-rich LiNiCoMnO (NCM9055) cathodes at a low loading of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!