Polymers capable of depolymerizing back to their own monomers offer a promising solution to address the challenges in polymer sustainability. Despite significant progress has been achieved in plastics circularity, chemical recycling of thermoplastic elastomers is relatively less concerned, largely because of their intrinsic complex multicomponents. This work creates a homopolymer-based platform towards chemically recyclable but tough thermoplastic elastomers. It is enabled by a semicrystalline polymer with high molecular weight but low crystallinity, which is prepared through ring-opening metathesis polymerization of a fully biobased cyclic olefin. By shifting the ring-chain equilibrium, quantitative conversions were achieved for both forward polymerization and reverse depolymerization. This simple circular, high-performance thermoplastic elastomer platform based on biomass highlights the importance of monomer design in addressing three challenges in sustainable polymers: the feedstock renewability, depolymerization selectivity, and performance trade-offs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445454 | PMC |
http://dx.doi.org/10.1038/s41467-024-52850-0 | DOI Listing |
Eur J Pharm Biopharm
December 2024
ten23 health AG, Mattenstr. 22, 4058 Basel, Switzerland; Institute of Pharmaceutical Sciences, Department of Pharmaceutics, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany. Electronic address:
Aseptic filling of biopharmaceutical products requires a grade A cleanroom environment, preferably ensured by isolators in grade C surroundings. Isolators are decontaminated before the start of filling processes using vaporized hydrogen peroxide (VHP) and filling starts at pre-defined residual VHP levels (e.g.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
Recent advances in medical plastics highlight the need for sustainable materials with desirable elastic properties. Traditional polyester elastomers have been used as alternatives to polyvinyl chloride (PVC) due to their biocompatibility and adjustable mechanical properties. However, these materials often lack the necessary stability and toughness for reliable medical applications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
CNRS - UMR5128 - University of Lyon, 43 av du 11 nov 1918, Villeurbanne, FRANCE.
Polymers (Basel)
November 2024
School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
Mechanocaloric cooling/heat pumping with zero carbon emission and high efficiency shows great potential for replacing traditional refrigeration with vapor compression. Mechanocaloric prototypes that are developed using shape memory alloys (SMAs) face the problems of a large driving force and high cost. In this work, we report a low-crystalline thermoplastic polyetherurethane (TPU) elastomer fiber with a low actuation force and good mechanocaloric performance.
View Article and Find Full Text PDFAdv Mater
December 2024
Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
Stretchable devices, garnering increasing attention as next-generation form factors, have a crucial problem in that vertical contraction occurs during stretching, causing image distortion of stretchable displays and discomfort in skin-attached devices. Previous structural strategies to mitigate vertical contraction, such as auxetic reentrants and wrinkles, suffer from the drawback that their structure becomes visible during stretching. In this study, this issue is addressed by unidirectionally aligning nanoscopic cylinders within block copolymer elastomer films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!