AI Article Synopsis

  • Back contact silicon solar cells eliminate grid lines, enhancing their aesthetic for use in buildings, vehicles, and aircrafts while allowing for self-power generation.
  • New laser techniques improve the production process, achieving the first silicon solar cell with over 27% efficiency by using hydrogenated amorphous silicon for surface passivation and implementing a unique dense passivating contact.
  • The approach significantly reduces processing time and includes the development of indium-less cells at 26.5% efficiency and silver-free cells at 26.2%, supporting the growing demand for solar technology in various applications.

Article Abstract

Back-contact silicon solar cells, valued for their aesthetic appeal because they have no grid lines on the sunny side, find applications in buildings, vehicles and aircraft and enable self-power generation without compromising appearance. Patterning techniques arrange contacts on the shaded side of the silicon wafer, which offers benefits for light incidence as well. However, the patterning process complicates production and results in power loss. We employed lasers to streamline the fabrication of back-contact solar cells and enhance the power-conversion efficiency. Using this approach, we produced a silicon solar cell that exceeded 27% efficiency. Hydrogenated amorphous silicon layers were deposited onto the wafer for surface passivation and to collect light-generated carriers. A dense passivating contact, which differs from conventional technology practice, was developed. Pulsed picosecond lasers operating at different wavelengths were used to create the back-contact patterns. The approach developed is a streamlined process for producing high-performance back-contact silicon solar cells, with a total effective processing time of about one-third that of the emerging mainstream technology. To meet the terawatt demand, we developed indium-less cells at 26.5% efficiency and precious silver-free cells at 26.2% efficiency. Thus, the integration of solar solutions into buildings and transportation is poised to expand with these technological advances.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-024-08110-8DOI Listing

Publication Analysis

Top Keywords

solar cells
16
silicon solar
12
back-contact solar
8
back-contact silicon
8
silicon
6
solar
6
cells
6
back-contact
5
silicon heterojunction
4
heterojunction back-contact
4

Similar Publications

This study presents a comprehensive evaluation of Copper Indium Gallium Selenide (CIGS) solar technology, benchmarked against crystalline silicon (c-Si) PERC PV technology. Utilizing a newly developed energy yield model, we analyzed the performance of CIGS in various environmental scenarios, emphasizing its behavior in low-light conditions and under different temperature regimes. The model demonstrated high accuracy with improved error metrics of normalized mean bias error (nMBE) ~ 1% and normalized root mean square error (nRMSE) of  ~ 8%-20% in simulating rack mounted setup and integrated PV systems.

View Article and Find Full Text PDF

Electronic devices cover a large subset of daily life gadgets which use power to run, hence increasing the load of the energy needs and indirectly impacting greenhouse gas emissions. Smart electrochromic windows provide a solution to this through remarkable energy saving by adjusting optical behavior depending on the environmental conditions. Since the electrochromic windows also need power to run, a self-powered electrochromic panel will be a better solution.

View Article and Find Full Text PDF

Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device.

View Article and Find Full Text PDF

Context: Exploration for renewable and environmentally friendly energy sources has become a major challenge to overcome the depletion of fossil fuels and their environmental hazards. Therefore, solar cell technology, as an alternative solution, has attracted the interest of many researchers. In the present work, the CsXInBr (X = Cu or Ag) compounds as lead-free halide perovskites have been studied due to their direct energy gap in the range of solar energy, thermodynamic stability, low effective mass of electrons, and high absorption coefficient.

View Article and Find Full Text PDF

Life cycle assessment of lead recycling processes in perovskite solar cells.

Chem Commun (Camb)

January 2025

School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

Life cycle assessment (LCA) was employed to evaluate the environmental impacts of various lead (Pb) recycling processes in perovskite solar cells (PSCs). The analysis identifies solvent recovery and reuse as critical factors in reducing environmental harm, highlighting the need for optimized recycling methods to enhance the sustainability of PSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!