Microbes in the dark oceans are a key determinant of remineralization of sinking carbon particles. However, most marine ecosystem models overlook how microbes aggregate on particles and the microscale interactions between particle-associated microbes, making it difficult to obtain mechanistic insights on their vertical power-law decay pattern. Here, we present a spatial population model where the attachment and detachment processes of bacterial cells depend on local density of particle-associated bacteria. We show that the power-law relationship can emerge when the non-random aggregated distribution of bacteria is considered without any depth-specific environmental parameters. Furthermore, the comparison between model behavior and empirical patterns in the Pacific and Southern Ocean indicated that temperature-dependent hydrolysis rate and nutrient-dependent sinking rate of particles are key parameters to explain the regional variations of the power-law exponent. The mechanistic approach developed here provides a pathway to link micro-scale interactions between individuals to macro-scale food chain structures and carbon cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2024.111956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!