AI Article Synopsis

  • A study was conducted in Ireland to assess levels of legacy and emerging flame retardant chemicals in sediments and biosolids from wastewater treatment plants, focusing on PCBs, PBDEs, and Cl-OPEs.
  • The highest concentrations were found for BDE-209 and certain Cl-OPEs, while PCBs and other PBDEs were generally low; however, biosolid levels of BDE-209 and Cl-OPEs were notably high compared to global reports.
  • Most chemicals showed low risk based on predicted safety levels, but some, like TCIPP, indicated a higher risk, while biosolid risk assessments couldn't be done; the study highlights concerns regarding persistent organic pollutants and the need for continued monitoring.

Article Abstract

A baseline assessment of legacy and emerging flame retardant chemicals was performed in inland and transitional sediments as well as biosolids emanating from a selection of wastewater treatment plants (WWTPs) in Ireland. A selection of 24 polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and chlorinated organophosphate esters (Cl-OPEs) were quantified in: 81 inland and transitional sediment samples collected during 2023; 39 transitional sediments collected between 2018 and 2022; and 21 biosolid samples collected from 7 WWTPs over 4-month intervals in January, May, and September 2023. Highest concentrations of BDE-209 and several Cl-OPEs were detected in both sediment and biosolid samples, while most PCBs and penta-/octa-BDEs were comparatively low. Moderate levels of PBDEs and Cl-OPEs were detected in Irish sediments compared to similar studies conducted internationally. In biosolid samples, levels of BDE-209 were on the higher end of figured reported worldwide while levels of ΣCl-OPEs were the highest relative to comparable international studies. PCBs meanwhile are on the lower end of international levels for both biosolids and sediments. Based on available predicted no-effect concentrations (PNECs), the majority of compounds assessed were found to be of low-risk based on their levels in sediments with the exception of TCIPP (Risk Quotient - RQ = 1.354 = high risk) as well as EHDPP, TEHP, PCB-118, and PCB-52 (RQ = 0.948, 0.576, 0.446, and 0.257 respectively = moderate risk). Similar risk assessment could not be performed on contaminants in biosolids, though levels of BDE-209 were on the higher end of figured reported worldwide (avg = 3155 ng/g) while levels of ΣCl-OPEs were the highest relative to comparable international studies (avg = 3290 ng/g). As the legacy PBDEs and PCBs have been listed as persistent organic pollutants (POPs) and replacement flame retardants such as Cl-OPEs have been flagged by programmes such as human biomonitoring for EU (HBM4EU) and the NORMAN Network as chemicals of emerging concern, continued monitoring of these moderate and high-risk contaminants in sediments, as well as an investigation of potential contamination of the food chain through land-spreading of biosolids on agricultural lands, would be warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176582DOI Listing

Publication Analysis

Top Keywords

biosolid samples
12
legacy emerging
8
emerging flame
8
flame retardants
8
wastewater treatment
8
inland transitional
8
transitional sediments
8
sediments well
8
samples collected
8
cl-opes detected
8

Similar Publications

Evaluation of PFAS extraction and analysis methods for biosolids.

Talanta

December 2024

Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) in the environment is a growing concern leading to a focus on PFAS occurrence in biosolids, a byproduct of wastewater treatment processes, often applied to improve soil health. This led to the need for analytical method development for assessing PFAS in biosolids. This study compares three methods for PFAS quantitation, evaluating solvent extraction, clean-up techniques, and final injection solvents.

View Article and Find Full Text PDF

Natural indigo toxicity for aquatic and terrestrial organisms.

Ecotoxicol Environ Saf

December 2024

Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, SP, Brazil.

Indigo is a widely used colorant available from natural and synthetic origin. It is practically insoluble in water. Indigo can reach aquatic sediments through wastewater discharges from dyeing processes, terrestrial compartments from the treatment sludges used as biosolids and dyed textiles disposed in landfills.

View Article and Find Full Text PDF

Land application of biosolids to pastures confers multiple agronomic and environmental benefits, particularly in coarse-textured soils with low nutrient and organic matter levels. However, concerns over potential water quality have led to more stringent regulations that will limit beneficial reuse of biosolids in Florida. This 3-year field study evaluated the impacts of biosolids application strategies on N and P leaching losses, and soil P availability in an established bahiagrass (Paspalum notatum Flueggé) pasture.

View Article and Find Full Text PDF

Batch leaching experiments were conducted to evaluate the release of forty per- and polyfluoroalkyl substances (PFAS) from sludge samples collected after thickening, anaerobic digestion, and dewatering processes at two wastewater treatment plants. The South District wastewater treatment plant (SDWWTP), which receives domestic wastewater and landfill leachate from a nearby landfill, and the Central District wastewater treatment plant (CDWWTP), which receives only domestic wastewater, were selected for this study. PFAS released into the aqueous phase were analyzed by sacrificial sampling after 1, 3, 7, 14, and 30 days.

View Article and Find Full Text PDF

Determinants of antimicrobial resistance in biosolids: A systematic review, database, and meta-analysis.

Sci Total Environ

December 2024

The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA. Electronic address:

Biosolids can provide a nutrient rich soil amendment, particularly for poor soils and semi-arid or drought-prone areas. However, there are concerns that sludge and biosolids could be a source of propagation and exposure to AMR determinants such as antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). To inform risk assessment efforts, a systematic literature review was performed to build a comprehensive spreadsheet database of ARB and ARG concentrations in biosolids (and some sludges specified as intended for land application), along with 69 other quantitative and qualitative meta-data fields from 68 published studies describing sampling information and processing methods that can be used for modeling purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!