Metric learning guided sinogram denoising for cone beam CT enhancement.

Med Phys

Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.

Published: December 2024

AI Article Synopsis

  • CBCT imaging faces challenges in detail and quantitative accuracy, partly due to limitations of traditional post-reconstruction denoising methods and the complexity of joint denoise-reconstruction approaches.
  • The study introduces MEGATRON, a novel method that enhances image quality via projection-domain processing, combining a metric learning module with a denoising network to improve final image outputs efficiently.
  • By focusing on aligning enhancement goals between projection and image domains, MEGATRON aims to create better reconstructed images using simpler and more effective processing techniques.

Article Abstract

Background: Cone beam computed tomography (CBCT) is a widely available modality, but its clinical utility has been limited by low detail conspicuity and quantitative accuracy. Convenient post-reconstruction denoising is subject to back projected patterned residual, but joint denoise-reconstruction is typically computationally expensive and complex.

Purpose: In this study, we develop and evaluate a novel Metric-learning guided wavelet transform reconstruction (MEGATRON) approach to enhance image domain quality with projection-domain processing.

Methods: Projection domain based processing has the benefit of being simple, efficient, and compatible with various reconstruction toolkit and vendor platforms. However, they also typically show inferior performance in the final reconstructed image, because the denoising goals in projection and image domains do not necessarily align. Motivated by these observations, this work aims to translate the demand for quality enhancement from the quantitative image domain to the more easily operable projection domain. Specifically, the proposed paradigm consists of a metric learning module and a denoising network module. Via metric learning, enhancement objectives on the wavelet encoded sinogram domain data are defined to reflect post-reconstruction image discrepancy. The denoising network maps measured cone-beam projection to its enhanced version, driven by the learnt objective. In doing so, the denoiser operates in the convenient sinogram to sinogram fashion but reflects improvement in reconstructed image as the final goal. Implementation-wise, metric learning was formalized as optimizing the weighted fitting of wavelet subbands, and a res-Unet, which is a Unet structure with residual blocks, was used for denoising. To access quantitative reference, cone-beam projections were simulated using the X-ray based Cancer Imaging Simulation Toolkit (XCIST). In both learning modules, a data set of 123 human thoraxes, which was from Open-Source Imaging Consortium (OSIC) Pulmonary Fibrosis Progression challenge, was used. Reconstructed CBCT thoracic images were compared against ground truth FB and performance was assessed in root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM).

Results: MEGATRON achieved RMSE in HU value, PSNR, and SSIM were 30.97 ± 4.25, 37.45 ± 1.78, and 93.23 ± 1.62, respectively. These values are on par with reported results from sophisticated physics-driven CBCT enhancement, demonstrating promise and utility of the proposed MEGATRON method.

Conclusion: We have demonstrated that incorporating the proposed metric learning into sinogram denoising introduces awareness of reconstruction goal and improves final quantitative performance. The proposed approach is compatible with a wide range of denoiser network structures and reconstruction modules, to suit customized need or further improve performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17435DOI Listing

Publication Analysis

Top Keywords

metric learning
20
sinogram denoising
8
cone beam
8
image domain
8
projection domain
8
reconstructed image
8
denoising network
8
denoising
7
image
6
metric
5

Similar Publications

Background: Child mortality is a reliable and significant indicator of a nation's health. Although the child mortality rate in Bangladesh is declining over time, it still needs to drop even more in order to meet the Sustainable Development Goals (SDGs). Machine Learning models are one of the best tools for making more accurate and efficient forecasts and gaining in-depth knowledge.

View Article and Find Full Text PDF

Objectives: This article aims to evaluate the use and effects of an artificial intelligence system supporting a critical diagnostic task during radiology resident training, addressing a research gap in this field.

Materials And Methods: We involved eight residents evaluating 150 CXRs in three scenarios: no AI, on-demand AI, and integrated-AI. The considered task was the assessment of a multi-regional severity score of lung compromise in patients affected by COVID-19.

View Article and Find Full Text PDF

TPepRet: a deep learning model for characterizing T cell receptors-antigen binding patterns.

Bioinformatics

January 2025

School of Computer Science and engineering, Central South University, Changsha, 410083, China.

Motivation: T-cell receptors (TCRs) elicit and mediate the adaptive immune response by recognizing antigenic peptides, a process pivotal for cancer immunotherapy, vaccine design, and autoimmune disease management. Understanding the intricate binding patterns between TCRs and peptides is critical for advancing these clinical applications. While several computational tools have been developed, they neglect the directional semantics inherent in sequence data, which are essential for accurately characterizing TCR-peptide interactions.

View Article and Find Full Text PDF

Background: Accurate preoperative prediction of vascular invasion in breast cancer is crucial for surgical planning and patient management. MRI radiomics has shown promise in enhancing diagnostic precision. This study aims to evaluate the effectiveness of integrating MRI radiomic features with clinical data using a deep learning approach to predict vascular invasion in breast cancer patients.

View Article and Find Full Text PDF

The transportation industry contributes significantly to climate change through carbon dioxide ( ) emissions, intensifying global warming and leading to more frequent and severe weather phenomena such as flooding, drought, heat waves, glacier melting, and rising sea levels. This study proposes a comprehensive approach for predicting emissions from vehicles using deep learning techniques enhanced by eXplainable Artificial Intelligence (XAI) methods. Utilizing a dataset from the Canadian government's official open data portal, we explored the impact of various vehicle attributes on emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!