Province-Level Decarbonization Potentials for China's Road Transportation Sector.

Environ Sci Technol

School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.

Published: October 2024

Decarbonizing road transportation is an important task in achieving China's climate goals. Illustrating the mitigation potentials of announced policies and identifying additional strategies for various vehicle fleets are fundamental in optimizing future control pathways. Herein, we developed a comprehensive analysis of carbon dioxide (CO) emissions from on-road vehicles as well as their mitigation potentials based on real-world databases and up-to-date policy scenarios. Total CO emissions of China's road transportation are estimated to be 1102 million tons (Mt) in 2022 and will continue to increase if future strategies are implemented as usual. Under current development trend and announced policy controls (i.e., integrated scenario), annual CO emissions are estimated to peak at 1235 Mt in 2025 and then decline to approximately 200 Mt around 2050. The scenario analysis indicates that electrification of passenger vehicles emerges as the most imperative decarbonization strategy for achieving carbon peak before 2030. Additionally, fuel economy improvement of conventional vehicles is identified to be effective for CO emission reduction for trucks until 2035 while new energy vehicle promotion shows great mitigation potentials in the long term. This study provides insight into heterogeneous low-carbon transportation transition strategies and valuable support for achieving China's dual-carbon goals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c06755DOI Listing

Publication Analysis

Top Keywords

road transportation
12
mitigation potentials
12
china's road
8
achieving china's
8
province-level decarbonization
4
potentials
4
decarbonization potentials
4
china's
4
potentials china's
4
transportation
4

Similar Publications

Semitransparent perovskite solar cells (ST-PSCs) for building-integrated photovoltaics (BIPV) face the challenge of achieving high efficiency due to significant light loss. The SnO2 electron transport layer (ETL), utilized in n-i-p PSCs and prepared via the sol-gel method, is susceptible to aggregation on substrate, resulting in light scattering that diminishes absorption of the perovskite layer. In this study, we propose a strategy that combines atomic layer deposition (ALD) and sol-gel solution to deposit a bilayer SnO2 structure to address these issues.

View Article and Find Full Text PDF

What Impact Does Net Zero Action on Road Transport and Building Heating Have on Exposure to UK Air Pollution?

Environ Sci Technol

January 2025

Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Biomedical Engineering Hub, White City Campus, 80 Wood Lane, London W12 0BZ, United Kingdom.

This study explores the cobenefits of reduced nitrogen dioxide (NO), ozone (O), and particulate matter (PM), through net zero (NZ) climate policy in the UK. Two alternative NZ scenarios, the balanced net zero (BNZP) and widespread innovation (WI) pathways, from the UK Climate Change Committee's Sixth Carbon Budget, were examined using a chemical transport model (CTM). Under the UK existing policy, Business as Usual (BAU), reductions in NO and PM were predicted by 2030 due to new vehicle technologies but plateau by 2040.

View Article and Find Full Text PDF

Nup107 contributes to the maternal to zygotic transition by preventing the premature nuclear export of pri-miRNA 427.

Development

January 2025

Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.

Emerging evidence suggests that the nuclear pore complex can have unique compositions and distinct nucleoporin functions in different cells. Here, we show that Nup107, a key component of the NPC scaffold, varies in expression over development: it is expressed at higher levels in the blastula compared to the gastrula suggesting a critical role prior to gastrulation. We find depletion of Nup107 affects the differentiation of the early germ layers leading to an expansion of the ectoderm at the expense of endoderm and mesoderm.

View Article and Find Full Text PDF

Inflammation alters the expression and activity of the mechanosensitive ion channels in periodontal ligament cells.

Eur J Orthod

December 2024

Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.

Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.

Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.

View Article and Find Full Text PDF

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!