AI Article Synopsis

Article Abstract

The diffraction efficiencies of a complex binary diffraction grating with a rectangular profile are controlled through the steps' phases, amplitudes, and duty cycle, based on analytical expressions. It is demonstrated that the zeroth-diffraction order can be canceled for any arbitrary value of the duty cycle, provided that a π-phase difference is imposed, along with a specific ratio of the steps' amplitudes. This feature is not feasible for separated amplitude-only and phase-only rectangular binary gratings in the context of one-dimensional gratings. In this framework, a key analytic relationship between the duty cycle and the steps' amplitude ratio is derived, allowing the design of such gratings with this desired feature across a wide range of conditions, not limited to a duty cycle of 0.5. Concerning the higher diffraction orders, it is proved that their intensities cancel or maximize for fixed duty cycle no matter the amplitude and phase values of the steps. The intensity of the m-th diffraction order possesses m maxima and m - 1 zeros on the full range of the duty cycle. All these features were corroborated experimentally. The broad insight of such a grating allows the design of gratings with diffraction efficiencies tailored for specific applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.531872DOI Listing

Publication Analysis

Top Keywords

duty cycle
24
complex binary
8
binary gratings
8
gratings diffraction
8
diffraction efficiencies
8
design gratings
8
diffraction
6
duty
6
cycle
6
gratings
5

Similar Publications

A Comprehensive Assessment of the Marginal Abatement Costs of CO of Co-Optima Multi-Mode Vehicles.

Energy Fuels

January 2025

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.

The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.

View Article and Find Full Text PDF

Charge detection mass spectrometry (CDMS) allows direct mass measurement of heterogeneous samples by simultaneously determining the charge state and the mass-to-charge ratio (/) of individual ions, unlike conventional MS methods that use large ensembles of ions. CDMS typically requires long acquisition times and the collection of thousands of spectra, each containing tens to hundreds of ions, to generate sufficient ion statistics, making it difficult to interface with the time scales of online separation techniques such as ion mobility. Here, we demonstrate the application of Fourier transform multiplexing and drift tube ion mobility joined with Orbitrap-based CDMS for the analysis of multimeric protein complexes.

View Article and Find Full Text PDF

Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.

View Article and Find Full Text PDF

Parameter-Tuned Pulsed Wave Photobiomodulation Enhances Stem Cells From Apical Papilla Differentiation: Evidence From Gene and Protein Analyses.

J Biophotonics

January 2025

Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.

This study examines the effects of pulsed wave photobiomodulation (pwPBM) on the osteogenic differentiation of stem cells from the apical papilla (SCAP). Using 810 nm near-infrared (NIR) light with 300 Hz pulses and a 30% duty cycle, pwPBM was applied at a total energy density of 750 mJ/cm. Osteogenesis was evaluated through both in vitro and in vivo analyses.

View Article and Find Full Text PDF

Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!