A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spherical harmonics-based deep learning achieves generalized and accurate diffusion tensor imaging. | LitMetric

AI Article Synopsis

  • Diffusion tensor imaging (DTI) is an important MRI technique used in clinics and research, but its reliability suffers due to low signal-to-noise ratio in diffusion-weighted images.
  • This study explores the use of deep learning (DL) to enhance DTI quality by using spherical harmonics (SH) for better representation of diffusion MRI signals.
  • The proposed SH-DTI method shows improved performance in analyzing DTI data and demonstrates strong generalization across various acquisition methods and settings, making it widely applicable.

Article Abstract

Diffusion tensor imaging (DTI) is a prevalent magnetic resonance imaging (MRI) technique, widely used in clinical and neuroscience research. However, the reliability of DTI is affected by the low signal-to-noise ratio inherent in diffusion-weighted (DW) images. Deep learning (DL) has shown promise in improving the quality of DTI, but its limited generalization to variable acquisition schemes hinders practical applications. This study aims to develop a generalized, accurate, and efficient DL-based DTI method. By leveraging the representation of voxel-wise diffusion MRI (dMRI) signals on the sphere using spherical harmonics (SH), we propose a novel approach that utilizes SH coefficient maps as input to a network for predicting the diffusion tensor (DT) field, enabling improved generalization. Extensive experiments were conducted on simulated and in-vivo datasets, covering various DTI application scenarios. The results demonstrate that the proposed SH-DTI method achieves advanced performance in both quantitative and qualitative analyses of DTI. Moreover, it exhibits remarkable generalization capabilities across different acquisition schemes, centers, and scanners, ensuring its broad applicability in diverse settings.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3471769DOI Listing

Publication Analysis

Top Keywords

diffusion tensor
12
deep learning
8
generalized accurate
8
tensor imaging
8
acquisition schemes
8
dti
6
spherical harmonics-based
4
harmonics-based deep
4
learning achieves
4
achieves generalized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: