AI Article Synopsis

  • The study focused on the genus Usnea, a group of edible lichens with medicinal uses, aiming to quantify usnic acid in three species using advanced analytical techniques.
  • Quantification methods (HPTLC-MS and UPLC-QTof-MSE) successfully identified usnic acid levels and sixteen different metabolites, showcasing excellent accuracy and linearity in results.
  • The research validates these methods according to ICH guidelines and highlights their potential in profiling herbal formulations containing Usnea spp. for various health applications.

Article Abstract

Background: The genus Usnea (Parmeliaceae; lichenized Ascomycetes) is pale grayish-green fruticose lichens which grow as leafless mini-shrubs and comprise about 360 species. Most of the Usnea species are edible and is utilized in preparation of traditional foods as well as in medicines to combat wide range of ailments.

Objective: The goal of this work was to quantify usnic acid in three Usnea spp. [Usnea ghattensis (UG), Usnea orientalis (UO) and Usnea undulata (UU)] using HPTLC-MS and chemical profiling of acetone extracts using UPLC-QTof-MSE resulted in the identification of sixteen compounds based on their MS/MS fragmentation patterns.

Methods: Hyphenated techniques, HPTLC-MS and UPLC-QTof-MSE have been proposed to quantify usnic acid and analysis of metabolites in the crude extracts qualitatively. This method allowed tentative characterization of metabolites from Usnea spp.

Results: The quantification study showed the excellent linearity of the usnic acid at 0.25-1 µg/band with a correlation coefficient r  2>0.99, and LOD, LOQ was found to be 51.7 and 156.6 ng/band, respectively. Further, UPLC-QTof-MSE analysis of crude extract led identification of lichen substances through their exact molecular masses and MS/MS fragmentation studies.

Conclusions: The present study summarizes HPTLC method for quantification of usnic acid in three different Usnea spp. Along with two herbal formulations containing Usnea spp. as the ingredient and developed method was validated as per the ICH guidelines and further UPLC-QTof-MSE analysis provides characterization of the sixteen different secondary metabolites based on their mass fragmentation studies.

Highlights: Rapid HPTLC method for quantification of usnic acid in three different Usnea spp. along with two herbal formulations and metabolite profiling using UPLC-QTof-MSE.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jaoacint/qsae074DOI Listing

Publication Analysis

Top Keywords

usnic acid
24
acid three
16
three usnea
16
usnea spp
16
usnea
10
usnea species
8
metabolite profiling
8
profiling uplc-qtof-mse
8
quantify usnic
8
ms/ms fragmentation
8

Similar Publications

Allelopathic influence of usnic acid on Physcomitrium patens: A proteomics approach.

Plant Physiol Biochem

December 2024

Department of Plant Biology, Pavol Jozef Šafárik University in Košice, Mánesova 1889/23, 040 01, Košice, Slovakia. Electronic address:

Allelopathy, the chemical interaction of plants by their secondary metabolites with surrounding organisms, profoundly influences their functional features. Lichens, symbiotic associations of fungi and algae and/or cyanobacteria, produce diverse secondary metabolites, among other usnic acid, which express to have potent biological activities. Mosses, i.

View Article and Find Full Text PDF

Bacterial biofilms are highly structured surface associated architecture of micro-colonies, which are strongly bonded with the exopolymeric matrix of their own synthesis. These exopolymeric substances, mainly exopolysaccharides (EPS) initially assist the bacterial adhesion and finally form a bridge over the microcolonies to protect them from environmental assaults and antimicrobial exposure. Bacterial cells in dental biofilm metabolize dietary carbohydrates and produce organic acids.

View Article and Find Full Text PDF

Design, synthesis, structural characterization, cytotoxicity and computational studies of Usnic acid derivative as potential anti-breast cancer agent against MCF7 and T47D cell lines.

Comput Biol Chem

December 2024

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia; Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia. Electronic address:

Article Synopsis
  • - Novel inhibitors like usnic acid derivative (UA1) are being developed to combat the increasing rates of breast cancer (BC) in women, promising stronger effects compared to existing treatments.
  • - The study utilized advanced techniques like FT-IR, NMR, and various simulations to analyze UA1’s structure and anticancer potential, finding it effective against breast cancer cell lines MCF7 and T47D with IC values indicating strong antitumor activity.
  • - Molecular docking and dynamics simulations showed UA1 binds effectively to the target protein, demonstrating stability and a favorable binding energy, suggesting its potential as a preventive agent against breast cancer.
View Article and Find Full Text PDF

Lichen and Its Microbiome as an Untapped Source of Anti-Biofilm Compounds.

Chem Biodivers

November 2024

Laboratoire des Agroressources, Biomolécules et Chimie pour l'Innovation en Santé (LABCiS), UR 22722, Université de Limoges, Limoges, France.

Lichen substances have been first described in the 1870s, and around 10 000 compounds have been isolated and characterized. Most of them have been evaluated for their activity on planktonic microorganisms (bacteria and fungi). More recently, microorganisms colonizing the lichen thallus have been isolated and identified using DNA sequencing, giving access to a wide diversity of culturable microorganisms.

View Article and Find Full Text PDF
Article Synopsis
  • - Cationic antimicrobial peptides (AMPs) show potential as both antimicrobial and anticancer agents, and linking them to bioactive molecules may enhance their effectiveness in treating cancer.
  • - In this study, two derivatives of usnic acid were combined with the AMP L-K6 using a new bonding method while both components demonstrated selective activity against cancer cells, specifically targeting the DNA repair enzyme TDP1.
  • - The resulting conjugates showed a range of effects, from decreased activity of the original drugs to increased cytotoxicity against glioblastoma cells, suggesting enhanced therapeutic potential compared to the individual components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!