AI Article Synopsis

  • The trifluoromethylthio group (SCF) is important in drug design due to its special electronic traits, stability, and high lipophilicity, but making its enantioselective derivatives is difficult.
  • A new method using iridium as a catalyst successfully facilitates the enantioselective trifluoromethylthiolation of propargylic C(sp)-H bonds in alkynes, showing effectiveness with various substrates, including those related to natural products and drugs.
  • This technique not only produces high yields and good stereoselectivity for trifluoromethyl thioethers but can also be adapted to create other valuable derivatives like difluoromethyl and chlorodifluor

Article Abstract

The trifluoromethylthio group (SCF) has gained increasing prominence in the field of drug design and development due to its unique electronic properties, remarkable stability, and high lipophilicity, but its derivatives remain challenging to access, especially in an enantioselective manner. In this Communication, we present an enantioselective iridium-catalyzed trifluoromethylthiolation of the propargylic C(sp)-H bonds of alkynes. This protocol demonstrates its efficacy across a diverse array of alkyne substrates, including B- and Si-protected terminal alkynes as well as those derived from natural products and pharmaceuticals, to give trifluoromethyl thioethers with good to excellent yield and stereoselectivity. Moreover, this protocol could be modified to access enantioenriched difluoromethyl and chlorodifluoromethyl thioethers (SCFH and SCFCl derivatives), significantly expanding the space of synthetically accessible enantioenriched fluoroorganic compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487557PMC
http://dx.doi.org/10.1021/jacs.4c12093DOI Listing

Publication Analysis

Top Keywords

iridium-catalyzed enantioselective
4
enantioselective propargylic
4
propargylic c-h
4
c-h trifluoromethylthiolation
4
trifluoromethylthiolation processes
4
processes trifluoromethylthio
4
trifluoromethylthio group
4
group scf
4
scf gained
4
gained increasing
4

Similar Publications

Heteroaryl-Directed Iridium-Catalyzed Enantioselective C-H Alkenylations of Secondary Alcohols.

J Am Chem Soc

January 2025

Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom.

Under iridium-catalyzed conditions, 2-aza-aryl-substituted secondary alcohols undergo C(sp)-H addition reactions to alkynes to provide alkenylated tertiary alcohols. The processes occur with very high regio- and enantioselectivity. An analogous addition to styrene is shown to provide a prototype C(sp)-H alkylation process.

View Article and Find Full Text PDF

Enantioselective α-C(sp)-H Borylation of Masked Primary Alcohols Enabled by Iridium Catalysis.

J Am Chem Soc

January 2025

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Functional group-directed site- and enantioselective C(sp)-H functionalization of alcohols or masked alcohols represents a formidable challenge. We herein report the first example of iridium-catalyzed asymmetric α-C(sp)-H borylation of primary alcohol-derived carbamates by the judicious choice of directing groups. A variety of chiral borylated carbamates were obtained with good to high enantioselectivities.

View Article and Find Full Text PDF

Facile access to chiral -1,2-diol derivatives Ir-catalyzed asymmetric hydrogenation of α-alkoxy-β-ketoesters.

Chem Commun (Camb)

December 2024

Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.

The iridium-catalyzed asymmetric hydrogenation of α-alkoxy-β-ketoesters dynamic kinetic resolution has been achieved with high efficiency and enantioselectivity. This strategy allows for the synthesis of differentiated -1,2-diol derivatives in high yields, exhibiting excellent enantio- and diastereoselectivity (up to 99% yield, 99% ee, and 99 : 1 dr). Additionally, high turnover number (TON) experiments (up to 1000 TON) and gram-scale synthesis of a key fragment of the potential drug Tesaglitazar were successfully performed, highlighting the protocol's potential for broader applications.

View Article and Find Full Text PDF

Synthesis of γ-Amino Amides by Iridium-Catalyzed Enantioselective Hydroamination of Internal Alkenes Directed by an Amide.

Angew Chem Int Ed Engl

December 2024

Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.

Catalytic regio- and enantioselective hydroamination of less activated internal alkenes presents a challenge to synthetic chemists due to their low reactivity and the difficulty in simultaneously controlling regio- and enantioselectivities. Here, we report an iridium-catalyzed enantioselective hydroamination of internal alkenes directed by an amide. The amide group on the alkene effectively directs the catalyst to overcome the low reactivity and control the regioselectivity and the enantiotopic face selection.

View Article and Find Full Text PDF
Article Synopsis
  • Chiral nitrogen-containing compounds are essential in various industries, but their synthesis can be challenging due to a vast range of chemical possibilities.
  • This research details a selective method to create 3,3-diarylallyl phthalimides, which, when treated with iridium catalysts, transform into 3,3-diarylpropyl amines with very high enantioselectivity (98-99% ee).
  • The study highlights the role of alkene purity in achieving high enantioselectivity and illustrates how the resulting chiral propylamines can be used to make important bioactive drugs like tolterodine and tolpropamine.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!