Cardiovascular diseases are disorders of the heart and vascular system that cause high mortality rates worldwide. Vascular endothelial cell (VEC) injury caused by oxidative stress (OS) is an important event in the development of various cardiovascular diseases, including ischemic heart disease. This study aimed to investigate the critical roles and molecular mechanisms of long non-coding RNA (lncRNA) SNHG16 in regulating vascular endothelial cell injury under oxidative stress. We demonstrated that SNHG16 was significantly downregulated and miRNA-23a-3p was notably induced in human vascular endothelial cells under OS. Overexpressing SNHG16 or silencing miR-23a-3p effectively mitigated the OS-induced VEC injury. Additionally, glutamine metabolism of VECs was suppressed under OS. SNHG16 protected the OS-suppressed glutamine metabolism, while miR-23a-3p functioned oppositely in VECs. Furthermore, SNHG16 downregulated miR-23a-3p by sponging miR-23a-3p, which direct targeted the glutamine metabolism enzyme, GLS. Finally, restoring miR-23a-3p in SNHG16-overexpressing VECs successfully reversed the protective effect of SNHG16 on vascular endothelial cell injury under OS. In summary, our results revealed the roles and molecular mechanisms of the SNHG16-mediated protection against VEC injury under OS by modulating the miR-23a-3p-GLS pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-024-05077-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!