Purpose: To investigate dynamical degree centrality (dDC) alteration and its association with metabolic disturbance and cognitive impairment in minimal hepatic encephalopathy (MHE).
Methods: Fifty-eight cirrhotic patients (22 with MHE, 36 without MHE [NHE]) and 25 healthy controls underwent resting-state functional magnetic resonance imaging, H-magnetic resonance spectroscopy, and neurocognitive examination based on the Psychometric Hepatic Encephalopathy Score (PHES). We obtained metabolite ratios in the bilateral posterior cingulate cortex and precuneus, including glutamate and glutamine (Glx)/total creatine (tCr), myo-inositol (mI)/tCr, total choline/tCr, and N-acetyl aspartate/tCr. For each voxel, degree centrality was calculated as the sum of its functional connectivity with other voxels in the brain; and sliding-window correlation was used to calculate dDC per voxel.
Results: We observed a stepwise increase in Glx/tCr and a decrease in mI/tCr from NHE to MHE. The intergroup dDC differences were observed in the bilateral posterior cingulate cortex and precuneus (region of interest [ROI1]), bilateral superior-medial frontal gyrus and anterior cingulate cortex (ROI2), and left caudate head. The dDC in ROI2 (r = 0.450, P < 0.001) and mI/tCr (r = 0.297, P = 0.024) was correlated with PHES. Significant correlations were found between dDC in ROI1 and Glx/tCr (r = - 0.413, P = 0.001) and mI/tCr (r = 0.554, P < 0.001). The dDC in ROI2, Glx/tCr, and mI/tCr showed potential for distinguishing NHE from MHE (areas under the curve = 0.859, 0.655, and 0.672, respectively).
Conclusion: Our findings suggested dynamic brain network disorganization in MHE, which was associated with metabolic derangement and neurocognitive impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00234-024-03470-4 | DOI Listing |
Ecol Evol
January 2025
Department of Environmental Systems Science ETH Zürich Switzerland.
Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.
View Article and Find Full Text PDFJ Oral Facial Pain Headache
March 2024
Department of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, 100700 Beijing, China.
The purpose was to explore the spatial centrality of the whole brain functional network related to migraine and to investigate the potential functional hubs associated with migraine. 32 migraine patients and 55 healthy controls were recruited and they received resting-state functional magnetic resonance imaging voluntarily. Voxel-wise Degree Centrality (DC) was measured across the whole brain, and group differences in DC were compared.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA.
Background: Brain network studies in Alzheimer's disease (AD) have primarily focused on structural and functional connectomes as separate entities. However, it remains unclear how brain structure interacts with brain function in AD.
Method: We included 75 cognitively unimpaired participants and 49 patients with AD.
Alzheimers Dement
December 2024
Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Graph theory is an advanced method for analyzing the balance of brain networks. However, the changes in white matter (WM) and metabolic networks and their correlation with clinical features in patients with posterior cortical atrophy (PCA) require further investigation. This study aims to clarify the structural, metabolic, WM, and metabolic topological network in PCA, and explore their correlation with clinical features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!