Clarifications on the Differentiation of Vertebral Fractures Using Deep Learning Models.

Radiology

Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.

Published: October 2024

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.241162DOI Listing

Publication Analysis

Top Keywords

clarifications differentiation
4
differentiation vertebral
4
vertebral fractures
4
fractures deep
4
deep learning
4
learning models
4
clarifications
1
vertebral
1
fractures
1
deep
1

Similar Publications

Episodic memory is subserved by interactions between entorhinal cortex (EC) and hippocampus. Within EC, a functional dissociation has been proposed for medial (MEC) and lateral (LEC) subregions, whereby, MEC processes spatial information while LEC processes information about objects and their location in space. Most of these studies, however, used classical methods which lack both spatial and temporal specificity, thus, the precise role of MEC/LEC in memory could use further clarification.

View Article and Find Full Text PDF

This study explores how select microRNAs (miRNAs) influence bone structure in humans and in transgenic mice. In trabecular bone biopsies from 84 postmenopausal women (healthy, osteopenic, and osteoporotic), we demonstrate that (deleted in lymphocytic leukemia 2)-encoded is strongly positively associated with bone mineral density (BMD) at different skeletal sites. In bone transcriptome analyses, levels correlated positively with the osteocyte characteristic transcripts (encoding sclerostin) and (Matrix Extracellular Phosphoglycoprotein), while the related showed a negative association with BMD and osteoblast markers.

View Article and Find Full Text PDF

The responses of root exudates and microbiome in the rhizosphere of main plant and aromatic intercrops to soil Cr stress.

Environ Pollut

December 2024

Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China. Electronic address:

Soil chromium (Cr) stress has a well-recognized negative impact on plant growth, and intercropping is a commonly used method to mitigate heavy metal toxicity to main plants. However, the responses of root exudates-microbial and their interactions among soil zones to soil Cr stress are always in need of clarification in intercropping system. In this study, three intercropping patterns (CT, Malus only; TM, Malus × Mentha and TA, Malus × Ageratum) with different soil Cr addition levels (NCR, LCR, HCR) were applied, and the rhizosphere ecological traits in the main plant (FRS) and intercrop (ARS) were investigated.

View Article and Find Full Text PDF

Regulation of AUF1 alternative splicing by hnRNPA1 and SRSF2 modulate the sensitivity of ovarian cancer cells to cisplatin.

Cell Oncol (Dordr)

December 2024

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.

Purpose: Clarification of cisplatin resistance may provide new targets for therapy in cisplatin resistant ovarian cancer. The current study aims to explore involvement of isoforms of AU-rich element RNA-binding protein 1 (AUF1) in cisplatin resistance in ovarian cancer.

Methods: The cancer stem cell-like features were analyzed using colony formation assay, tumor sphere formation assay and nude mouse xenograft experiments.

View Article and Find Full Text PDF

Background/objectives: Atherosclerosis is a primary cause of cardiovascular disease associated with inflammation and lipid metabolism disorders. The accumulation of cholesterol-containing macrophage foam cells characterizes the early stages. The -coumaric acid (CA) contained in vegetables may have various physiological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!