Data-Independent Acquisition Proteome Technology for Analysis of Antifungal and Anti-aflatoxigenic Properties of Eugenol to .

J Agric Food Chem

Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Published: October 2024

Several toxicogenic , such as and , could biosynthesize aflatoxin B (AFB) and other mycotoxins. Chemical fungicides are commonly used to control fungal contamination, but chemical residues may pose significant risks to human health and environmental stability. Consequently, natural antifungal and aflatoxin-inhibiting agents could be sustainable alternatives. Eugenol has been used as an inhibitor of aflatoxins (AFs), which is a common essential oil. Nevertheless, the definite mechanism by which eugenol exerts its inhibitory effect on remains unclear. This research demonstrates that eugenol significantly suppressed fungi growth and AF production as the dose increased (40.9 to 100%). With the proteomics approach, the inhibition pathway of eugenol was investigated. The production of proteins involved in cell wall integrity was notably reduced under eugenol treatment, indicating that eugenol destroys the cell wall integrity of . Furthermore, exposure to eugenol downregulated several fungal developmental regulators and subsequently inhibited development. Energy metabolism in is closely related to its secondary metabolism. Under eugenol treatment, the synthesis of proteins relevant to the pentose phosphate pathway was significantly enhanced, leading to a decrease in the availability of acetyl-CoA, a precursor for AF biosynthesis. Simultaneously, the valine, leucine, and isoleucine biosynthesis pathways were enhanced, further reducing the content of acetyl-CoA. This might be the primary factor in the inhibition of AF biosynthesis by eugenol. Ribosome biogenesis was the most dysregulated pathway based on KEGG data, indicating that eugenol disturbed ribosome biogenesis and affected its normal function in . In conclusion, eugenol inhibits the cellular integrity, energy metabolism, and protein synthesis and then suppresses development and AF biosynthesis, which provides a clearer grasp of the inhibitory mechanism meaningful for and AF contamination control.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c04635DOI Listing

Publication Analysis

Top Keywords

eugenol
12
cell wall
8
wall integrity
8
eugenol treatment
8
indicating eugenol
8
energy metabolism
8
ribosome biogenesis
8
data-independent acquisition
4
acquisition proteome
4
proteome technology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!