Abdominal hemorrhage is an important clinical disease that can be life-threatening in severe cases. Therefore, timely detection and treatment of abdominal hemorrhage is crucial for the health and safety of patients. Magnetic induction tomography is a non-invasive, nonradioactive, and non-contact electromagnetic imaging technology with potential application value for disease screening and continuous monitoring. In this paper, a simulation model of electrical impedance distribution close to the real human abdominal tissue was constructed, and based on this model, the magnetic induction tomography simulation method of internal bleeding was studied by the finite element numerical method, and the comparison was verified by phantom experiments. The eddy current density distribution inside the abdominal tissue and the magnetic induction phase data at the tissue boundary are solved, and sensitivity analysis of phase differences caused by changes in the radius and position of bleeding volume was conducted, and three sensitivity indicators were proposed. Both the simulation and phantom experiment show that when there are six types of tissues with different conductivity in the abdomen, the radius of bleeding increases from 10 to 30 mm, and the radius phase difference sensitivity index Ar increases approximately linearly monotonically. Its radius transformation sensitivity Kr is 3.0961 × 10-5°/cm. When the position of the bleeding volume changes, the sensitivity index Ax of the x-axis displacement phase difference shows a quasilinear monotonic decrease, and the x-axis displacement sensitivity Kx is -6.3744 × 10-6°/cm. The y-axis displacement phase difference sensitivity Ay index shows a quasilinear relationship and monotonically increases, with a y-axis displacement sensitivity Ky of 5.2870 × 10-4°/cm. The results indicate that the phase difference sensitivity before and after the occurrence of bleeding can be used as a quantitative monitoring indicator to monitor the occurrence and trend of intra-abdominal hemorrhage, laying the foundation for the preliminary screening and continuous monitoring of abdominal hemorrhage diseases using magnetic induction imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0214709 | DOI Listing |
ACS Omega
January 2025
Swedish Centre for Resource Recovery, Faculty of Textiles, Engineering and Business, University of Borås, 501 90 Boras, Sweden.
This study investigates the morphology and thermo-mechanical properties of cross-linked polyethylene (PEX) pipes for potential use in high-temperature borehole thermal energy storage systems. Particular attention is given to a novel type of PEX pipe produced through photoinitiated cross-linking (PEX-e). Two formulations, PEX-e1 and PEX-e2, were analyzed and compared to peroxide-cross-linked polyethylene (PEX-a) and non-cross-linked bimodal polyethylene (PE100) pipes.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Histological chorioamnionitis (HCA) is a form of maternal immune activation (MIA) linked to an increased risk of neurodevelopmental disorders in offspring. Our previous study identified neurodevelopmental impairments in an MIA mouse model mimicking HCA. Thus, this study investigated the role of CD11c microglia, key contributors to myelination through IGF-1 production, in this pathology.
View Article and Find Full Text PDFSci Rep
January 2025
Nonprofitable Organization Touche NPO, Sapporo, 060-004, Japan.
In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.
View Article and Find Full Text PDFPain Rep
February 2025
Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
Repetitive transcranial magnetic stimulation (rTMS) has increasingly been used to modify cortical maladaptive plastic changes shown to occur in fibromyalgia (FM) and to correlate with symptoms. Evidence for its efficacy is currently inconclusive, mainly due to heterogeneity of stimulation parameters used in trials available to date. Here, we reviewed the current evidence on the use of rTMS for FM control in the format of a narrative review, in which a systematic dissection of the different stimulation parameters would be possible.
View Article and Find Full Text PDFJ Pain Res
January 2025
Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.
Background: Previous research has demonstrated that placebo induction manipulations can reduce an individual's pain through non-specific mechanisms, such as expectancy manipulations. However, despite robust research characterizing these effects, individual differences in predicting placebo analgesic responses are not well understood.
Methods: Fifty-four healthy pain-free adults over 18 (M=22.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!