The emerging field of synthetic morphogenesis implements synthetic biology tools to investigate the minimal cellular processes sufficient for orchestrating key developmental events. As the field continues to grow, there is a need for new tools that enable scientists to uncover nuances in the molecular mechanisms driving cell fate patterning that emerge during morphogenesis. Here, we present a platform that combines cell engineering with biomaterial design to potentiate artificial signaling in pluripotent stem cells (PSCs). This platform, referred to as PSC-MATRIX, extends the use of programmable biomaterials to PSCs competent to activate morphogen production through orthogonal signaling, giving rise to the opportunity to probe developmental events by initiating morphogenetic programs in a spatially constrained manner through non-native signaling channels. We show that the PSC-MATRIX platform enables temporal and spatial control of transgene expression in response to bulk, soluble inputs in synthetic Notch (synNotch)-engineered human PSCs for an extended culture of up to 11 days. Furthermore, we used PSC-MATRIX to regulate multiple differentiation events via material-mediated artificial signaling in engineered PSCs using the orthogonal ligand green fluorescent protein, highlighting the potential of this platform for probing and guiding fate acquisition. Overall, this platform offers a synthetic approach to interrogate the molecular mechanisms driving PSC differentiation that could be applied to a variety of differentiation protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480943PMC
http://dx.doi.org/10.1021/acsbiomaterials.4c00885DOI Listing

Publication Analysis

Top Keywords

artificial signaling
12
pluripotent stem
8
developmental events
8
molecular mechanisms
8
mechanisms driving
8
signaling
5
platform
5
templated pluripotent
4
stem cell
4
differentiation
4

Similar Publications

The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.

View Article and Find Full Text PDF

Large Language Models (LLMs) have shown success in predicting neural signals associated with narrative processing, but their approach to integrating context over large timescales differs fundamentally from that of the human brain. In this study, we show how the brain, unlike LLMs that process large text windows in parallel, integrates short-term and long-term contextual information through an incremental mechanism. Using fMRI data from 219 participants listening to spoken narratives, we first demonstrate that LLMs predict brain activity effectively only when using short contextual windows of up to a few dozen words.

View Article and Find Full Text PDF

Fructose-Driven glycolysis supports synaptic function in subterranean rodent - Gansu Zokor (Eospalax cansus).

Neuroscience

January 2025

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:

Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).

View Article and Find Full Text PDF

Introduction: Haemodynamic atrioventricular delay (AVD) optimisation has primarily focussed on signals that are not easy to acquire from a pacing system itself, such as invasive left ventricular catheterisation or arterial blood pressure (ABP). In this study, standard clinical central venous pressure (CVP) signals are tested as a potential alternative.

Methods: Sixteen patients with a temporary pacemaker after cardiac surgery were studied.

View Article and Find Full Text PDF

The body weight-based thrombolytic medication strategy in clinical trials shows critical defects in recanalization rate and post-thrombolysis hemorrhage. Methods for perceiving thrombi heterogeneity of thrombolysis resistance is urgently needed for precise thrombolysis. Here, we revealed the relationship between the thrombin heterogeneity and the thrombolysis resistance in thrombi and created an artificial biomarker-based nano-patrol system with robotic functional logic to perceive and report the thrombolysis resistance of thrombi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!