A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simulation of lithium hydroxide decomposition using deep potential molecular dynamics. | LitMetric

Simulation of lithium hydroxide decomposition using deep potential molecular dynamics.

J Chem Phys

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.

Published: October 2024

Chemical reactions and vapor-liquid equilibria for molten lithium hydroxide (LiOH) were studied using molecular dynamics simulations and a deep potential (DP) model. The neural network for the model was trained on quantum density functional theory data for a range of conditions. The DP model allows simulations over timescales of hundreds of ns, which provide equilibrium compositions for the systems of interest. Single-phase NPT simulations of the liquid show the decomposition of LiOH into lithium oxide (Li2O) and dissolved water (H2O). These DP results were validated by direct ab initio molecular dynamics simulations that confirmed the accuracy of the model with respect to reaction kinetics and equilibrium properties of the melt. The reactive vapor-liquid behavior of this system was subsequently studied using direct coexistence interfacial DP simulations. Partial pressures of H2O in the vapor are found to be in close agreement with available experimental measurements. By fitting temperature-dependent expressions for the reaction equilibrium and Henry's law constants, the equilibrium composition for any given initial composition and temperature can be quantitatively modeled. For high initial concentrations of Li2O or H2O, mixtures of LiOH + Li2O/H2O are found to undergo phase separation. The present study illustrates how DP-based molecular dynamics simulations can be used for quantitative modeling of multiphase reactive behavior with the accuracy of the underlying ab initio quantum chemical methods.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0230440DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
16
dynamics simulations
12
lithium hydroxide
8
deep potential
8
simulations
6
simulation lithium
4
hydroxide decomposition
4
decomposition deep
4
molecular
4
potential molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!