Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.e. nucleic acids and proteins, as well as several small metabolites and signaling molecules. They play essential roles in key processes such as gene regulation, protein synthesis and metabolism, as well as neurotransmitter synthesis and clearance. A decade ago, roughly half of the human 7BS MTases had been characterized experimentally, whereas the remaining ones merely represented hypothetical enzymes predicted from bioinformatics analysis, many of which were denoted METTLs (METhylTransferase-Like). Since then, considerable progress has been made, and the function of > 80% of the human 7BS MTases has been uncovered. In this review, I provide an overview of the (estimated) 120 human 7BS MTases, grouping them according to substrate specificities and sequence similarity. I also elaborate on the challenges faced when studying these enzymes and describe recent major advances in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514484 | PMC |
http://dx.doi.org/10.1093/nar/gkae816 | DOI Listing |
Nucleic Acids Res
October 2024
Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316Oslo, Norway.
Methylation is a common biochemical reaction, and a number of methyltransferase (MTase) enzymes mediate the various methylation events occurring in living cells. Almost all MTases use the methyl donor S-adenosylmethionine (AdoMet), and, in humans, the largest group of AdoMet-dependent MTases are the so-called seven-β-strand (7BS) MTases. Collectively, the 7BS MTases target a wide range of biomolecules, i.
View Article and Find Full Text PDFJ Biol Chem
June 2023
Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
Lysine methylation is an abundant posttranslational modification, which has been most intensively studied in the context of histone proteins, where it represents an important epigenetic mark. Lysine methylation of histone proteins is primarily catalyzed by SET-domain methyltransferases (MTases). However, it has recently become evident that also another MTase family, the so-called seven-β-strand (7BS) MTases, often denoted METTLs (methyltransferase-like), contains several lysine (K)-specific MTases (KMTs).
View Article and Find Full Text PDFNucleic Acids Res
August 2017
Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0316, Norway.
Many cellular proteins are methylated on lysine residues and this has been most intensively studied for histone proteins. Lysine methylations on non-histone proteins are also frequent, but in most cases the functional significance of the methylation event, as well as the identity of the responsible lysine (K) specific methyltransferase (KMT), remain unknown. Several recently discovered KMTs belong to the so-called seven-β-strand (7BS) class of MTases and we have here investigated an uncharacterized human 7BS MTase currently annotated as part of the endothelin converting enzyme 2, but which should be considered a separate enzyme.
View Article and Find Full Text PDFBiochem J
July 2016
Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway.
Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!