Histone lysine 2-hydroxyisobutyrylation (Khib) was identified as a novel posttranslational modification in 2014. Significant progress has been made in understanding its roles in reproduction, development, and disease. Although 2-hydroxyisobutyrylation shares some overlapping modification sites and regulatory factors with other lysine residue modifications, its unique structure suggests distinct functions. This review summarizes the latest advancements in Khib, including its regulatory mechanisms, roles in mammalian physiological processes, and its relationship with diseases. This provides direction for further research on Khib and offers new perspectives for developing treatment strategies for related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.31435 | DOI Listing |
Background: TPM3 (tropomyosin 3) is an actin-binding protein in vascular smooth muscle cells, where posttranslational modifications critically regulate its actin affinity, influencing cardiovascular function. Emerging evidence suggests that Khib (2-hydroxyisobutyrylation) plays a significant role in the cardiovascular system. Histone deacetylase 3 (HDAC3) serves as an "eraser" of Khib marks.
View Article and Find Full Text PDFBMC Genomics
October 2024
Radiation Oncology Center, Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
Radioresistance contributes to metastasis and recurrence in non-small cell lung cancer (NSCLC) patients. However, the underlying mechanism remains unclear. To provide novel clues, a complete multi-omics map of a radioresistant cancer cell line has been profiled.
View Article and Find Full Text PDFJ Cell Physiol
December 2024
School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China.
Histone lysine 2-hydroxyisobutyrylation (Khib) was identified as a novel posttranslational modification in 2014. Significant progress has been made in understanding its roles in reproduction, development, and disease. Although 2-hydroxyisobutyrylation shares some overlapping modification sites and regulatory factors with other lysine residue modifications, its unique structure suggests distinct functions.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
July 2024
State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
Background: Excessive backfat deposition lowering carcass grade is a major concern in the pig industry, especially in most breeds of obese type pigs. The mechanisms involved in adipogenesis and fat accumulation in pigs remain unclear. Lysine 2-hydroxyisobutyrylation (Khib), is a novel protein post-translational modification (PTM), which play an important role in transcription, energy metabolism and metastasis of cancer cells, but its role in adipogenesis and fat accumulation has not been shown.
View Article and Find Full Text PDFPlant Physiol
October 2024
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
Histone post-translational modifications (PTMs), such as acetylation and recently identified lysine 2-hydroxyisobutyrylation (Khib), act as active epigenomic marks in plants. SANT domain-containing proteins SANT1, SANT2, SANT3, and SANT4 (SANT1/2/3/4), derived from PIF/Harbinger transposases, form a complex with HISTONE DEACETYLASE 6 (HDA6) to regulate gene expression via histone deacetylation. However, whether SANT1/2/3/4 coordinates different types of PTMs to regulate transcription and mediate responses to specific stresses in plants remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!