Herein, we report a photoinduced 1,7-hydrosulfonylation of allylic ethers and amides a sequential Pd-mediated 1,5-HAT process and Pd-catalyzed allylic nucleophilic attack of arylsulfonates. This rationally designed synthetic protocol allows for facile construction of a series of structurally novel allylic sulfonated scaffolds, and features mild conditions, cheap and readily available raw materials and functional group compatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc03557g | DOI Listing |
Arch Biochem Biophys
January 2025
Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany.
4-Phenol oxidases are proposed to be involved in the utilization of lignin-derived aromatic compounds. While enzymes with selectivity towards 4-hydroxyphenyl and guaiacyl motifs are well described, we identified the first syringyl-specific oxidase from Streptomyces cavernae (Sc4ASO) only very recently. Here, in-depth studies were conducted to unravel the molecular origins of the outstanding selectivity of Sc4ASO.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
γ-l-Glutamyl-S-allyl-l-cysteine (GSAC) is renowned for its flavor-modifying effects and beneficial biological activities. However, the level of GSAC decreases significantly during the processing of black garlic, and the pathways and degradation products resulting from this decline remain unclear. To investigate the potential transformation mechanisms of GSAC in black garlic, simulation systems for thermal decomposition, Maillard reactions, and enzymatic hydrolysis were established.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland.
The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.
View Article and Find Full Text PDFMolecules
January 2025
Université de Reims Champagne-Ardenne, CNRS, ICMR, 51097 Reims, France.
A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the bis-amine used in the first step. Moreover, an additional substituent (allyl, ethynyl) may be inserted into the structure via nucleophilic addition of an organometallic reagent to the starting bis-glycosylamine.
View Article and Find Full Text PDFFoods
January 2025
Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
Glucosinolates are chemically stable compounds that exhibit biological activity in the body following hydrolysis catalyzed by the enzyme myrosinase. While existing and studies suggest that the hydrolysis products of glucosinolates predominantly exert beneficial effects in both human and animal organisms, some studies have found that the excessive consumption of glucosinolates may lead to toxic and anti-nutritional effects. Given that glucosinolates are primarily ingested in the human diet through dietary supplements and commercially available cruciferous vegetables, we investigated the effects of the glucosinolate sinigrin on molecular markers in the myocardia of healthy Swiss mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!