The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440256PMC
http://dx.doi.org/10.1016/j.ncrna.2024.09.006DOI Listing

Publication Analysis

Top Keywords

cancer
8
circrnas mirnas
8
circrnas
5
emerging roles
4
roles circrna-mirna
4
circrna-mirna networks
4
networks cancer
4
cancer development
4
development therapeutic
4
therapeutic response
4

Similar Publications

Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.

View Article and Find Full Text PDF

Despite the pivotal role of cytotoxic T lymphocytes (CTLs) in anti-tumor immunity, a substantial proportion of CTL-rich hepatocellular carcinoma (HCC) patients experience early relapse or immunotherapy resistance. However, spatial immune variations impacting the heterogeneous clinical outcomes of CTL-rich HCCs remain poorly understood. Here, we compared the single-cell and spatial landscapes of 20 CTL-rich HCCs with distinct prognoses using multiplexed in situ staining and validated the prognostic value of myeloid spatial patterns in a cohort of 386 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!