Bacterial and food allergens are associated with immune-mediated food allergies via the gut-skin axis. However, there has been no data on the potential use of phages to rescue this pathological process. A human triple cell co-culture model incorporating colonocytes (T84 cells), macrophages (THP-1 cells), and hepatocytes (Huh7 cells) was established and infected with PAO1 (P.a PAO1) in the absence or presence of its KPP22 phage in Dulbecco's Modified Eagle's Medium (DMEM), DMEM+ ovalbumin (OVA), or DMEM+β-casein media. The physiological health of cells was verified by assessing cell viability and Transepithelial electrical resistance (TEER) across the T84 monolayer. The immune response of cells was investigated by determining the secretions of IL-1β, IL-8, IL-22, and IL-25. The ability of P.a PAO1 to adhere to and invade T84 cells was evaluated. The addition of either OVA or β-casein potentiated the P.a PAO1-elicited secretion of cytokines. The viability and TEER of the T84 monolayer were lower in the P.a PAO1+OVA group compared to the P.a PAO1 alone and PAO1+β-casein groups. OVA and β-casein significantly increased the adherence and invasion of P.a PAO1 to T84 cells. In the presence of the KPP22 phage, these disruptive effects were abolished. These results imply that: (1) food allergens and bacterial toxic effector molecules exacerbate each other's disruptive effects; (2) food allergen and bacterial signaling at the gut-skin mucosal surface axis depend on a network of bacteria-phage-eukaryotic host interactions; and (3) phages are complementary for the evaluation of pathobiological processes that occur at the interface between bacteria, host cellular milieu, and food antigens because phages intervene in P.a PAO1-, OVA-, and β-casein-derived inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426303 | PMC |
Food Chem
January 2025
State Key Laboratory for Food Nutrition and Safety; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
In the present study, we developed a nanozyme-based direct competitive immunoassay to detect walnut allergen (Jug r 4) in foods. Walnut monoclonal antibody (mAb) and CuSe@BiMoO nanocomposites were generated to form a signal probe by electrostatic adsorption. The nanocomposites had high peroxidase-like activity and could be stored at room temperature.
View Article and Find Full Text PDFFoods
January 2025
Department of Nutrition, Nursing School, Federal University of Minas Gerais, Alfredo Balena Avenue, 190, Room 314, Santa Efigênia, Belo Horizonte 30130-100, MG, Brazil.
This scoping review aims to understand the cell-based meat production process, including the regulations, potential hazards, and critical points of this production. This review includes studies on cultured meat production processes, health hazards, and regulatory guidelines, excluding those without hazard analysis, incomplete texts, or studies published before 2013. The search was performed in eight electronic databases (MEDLINE, Web of Science, Embase, Cochrane Library, Scopus, LILACS, and Google Scholar) using MeSH terms and adaptations for each database.
View Article and Find Full Text PDFFoods
January 2025
School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.
Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.
View Article and Find Full Text PDFFoods
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China.
Prebiotics and probiotics have key roles in the intervention and treatment of food allergies. This study assesses the effect of synergistic fructo-oligosaccharide (Lp-FOS) intervention using an allergic mouse model induced by soy protein. The results showed that Lp synergistic FOS significantly decreased clinical allergy scores, inhibited specific antibodies (IgE, IgG, and IgG1), IL-4, IL-6, and IL-17A levels, and increased IFN-γ and IL-10 levels.
View Article and Find Full Text PDFFoods
January 2025
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!