A next generation tomosynthesis (NGT) prototype has been developed to investigate alternative scanning geometries for digital breast tomosynthesis (DBT). The NGT system uses a 2D plane as an address space for the x-ray source to define an acquisition geometry. In previous work, tests of physics have been used as objective metrics to evaluate image quality for NGT. In this work, the performance of custom NGT acquisition geometries is evaluated for mastectomy specimens to validate previous phantom experiments. Two custom acquisition geometries - incorporating T- and K-shaped source motion paths in the posteroanterior direction - were compared with a conventional DBT acquisition geometry. Noise power spectra (NPS) are calculated using 3D image reconstructions of the three acquisition geometries to evaluate the degradation of image quality due to noise and to visualize NGT sampling properties in the Fourier domain. NPS are used to describe features of the specimen image reconstructions and compare acquisition geometries. NGT acquisition geometries were found to improve high-frequency performance with isotropic super resolution, reduce out-of-plane reconstruction artifacts, and improve overall image reconstruction quality. The T-geometry combines the benefits of narrow- and wide-angle tomosynthesis in a single scan improving high-frequency spatial resolution and out-of-plane blurring, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441092PMC
http://dx.doi.org/10.1117/12.2608811DOI Listing

Publication Analysis

Top Keywords

acquisition geometries
20
image quality
12
generation tomosynthesis
8
acquisition geometry
8
ngt acquisition
8
image reconstructions
8
acquisition
7
image
6
ngt
6
geometries
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!