Background: Pancreatic cancer, a formidable gastrointestinal neoplasm, is characterized by its insidious onset, rapid progression, and resistance to treatment, which often lead to a grim prognosis. While the complex pathogenesis of pancreatic cancer is well recognized, recent attention has focused on the oncogenic roles of senescent tumor-associated fibroblasts. However, their precise role in pancreatic cancer remains unknown. Resveratrol is a natural polyphenol known for its multifaceted biological actions, including antioxidative and neuroprotective properties, as well as its potential to inhibit tumor proliferation and migration. Our current investigation builds on prior research and reveals the remarkable ability of resveratrol to inhibit pancreatic cancer proliferation and metastasis.
Aim: To explore the potential of resveratrol in inhibiting pancreatic cancer by targeting senescent tumor-associated fibroblasts.
Methods: Immunofluorescence staining of pancreatic cancer tissues revealed prominent coexpression of α-SMA and p16. HP-1 expression was determined using immunohistochemistry. Cells were treated with the senescence-inducing factors known as 3CKs. Long-term growth assays confirmed that 3CKs significantly decreased the CAF growth rate. Western blotting was conducted to assess the expression levels of p16 and p21. Immunofluorescence was performed to assess LaminB1 expression. Quantitative real-time polymerase chain reaction was used to measure the levels of several senescence-associated secretory phenotype factors, including IL-4, IL-6, IL-8, IL-13, MMP-2, MMP-9, CXCL1, and CXCL12. A scratch assay was used to assess the migratory capacity of the cells, whereas Transwell assays were used to evaluate their invasive potential.
Results: Specifically, we identified the presence of senescent tumor-associated fibroblasts within pancreatic cancer tissues, linking their abundance to cancer progression. Intriguingly, Resveratrol effectively eradicated these fibroblasts and hindered their senescence, which consequently impeded pancreatic cancer progression.
Conclusion: This groundbreaking discovery reinforces Resveratrol's stature as a potential antitumor agent and positions senescent tumor-associated fibroblasts as pivotal contenders in future therapeutic strategies against pancreatic cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438786 | PMC |
http://dx.doi.org/10.4251/wjgo.v16.i9.3980 | DOI Listing |
Front Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDFJCO Oncol Adv
December 2024
Department of Surgery, Oregon Health & Science University, Portland, OR.
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related deaths with a 5-year survival rate of 13%. Surgical resection remains the only curative option as systemic therapies offer limited benefit. Poor response to chemotherapy and immunotherapy is due, in part, to the dense stroma and heterogeneous tumor microenvironment (TME).
View Article and Find Full Text PDFFront Oncol
December 2024
Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China.
Background: Prostate cancer (PCa) ranks as the second leading cause of cancer-related mortality among men. Long non-coding RNAs (lncRNAs) are known to play a regulatory role in the development of various human cancers. LncRNA MAFG-divergent transcript (MAFG-DT) was reported to play a crucial role in tumor progression of multiple human cancers, such as pancreatic cancer, colorectal cancer, bladder cancer, and gastric cancer.
View Article and Find Full Text PDFJ Natl Cancer Cent
December 2024
Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, and Department of Orthopaedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Bone marrow is pivotal for normal hematopoiesis and immune responses, yet it is often compromised by malignancies. The bone microenvironment (BME), composed of bone and immune cells, maintains skeletal integrity and blood production. The emergence of primary or metastatic tumors in the skeletal system results in severe complications and contributes significantly to cancer-related mortality.
View Article and Find Full Text PDFBME Front
December 2024
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Deep-tissue solid cancer treatment has a poor prognosis, resulting in a very low 5-year patient survival rate. The primary challenges facing solid tumor therapies are accessibility, incomplete surgical removal of tumor tissue, the resistance of the hypoxic and heterogeneous tumor microenvironment to chemotherapy and radiation, and suffering caused by off-target toxicities. Here, sonodynamic therapy (SDT) is an evolving therapeutic approach that uses low-intensity ultrasound to target deep-tissue solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!