Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The escalating demands for miniaturization, integration, and portability in electronic devices have underscored the criticality of efficient heat dissipation. The utilization of high-performance thermal interface materials (TIMs) to fill the gaps between contacting surfaces holds significant potential for enhancing heat transfer efficiency. Herein, we successfully enhance the thermal properties of the epoxy composite TIM by integrating grown vertically aligned graphene on the metal surface using radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). To investigate the effect of vertical graphene on epoxy, the sandwich structure of copper/vertical graphene-epoxy/copper (Cu/VG-EP/Cu) is fabricated by incorporating epoxy resin. The experimental results demonstrate that the thermal conductivity of VG-EP reaches 2.06 W m K and achieves an impressive 1215% maximum enhancement. Furthermore, the numerical simulation findings show that vertical graphene consistent with the temperature gradient exhibits the highest heat transfer efficiency. This work presents an in-depth study of vertically aligned graphene within the epoxy resin, highlighting the advantages of vertically aligned fillers and offering novel perspectives for the advancement of TIMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp02674h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!