A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing thermal transport of epoxy composites with vertically aligned graphene grown on the thermal interface. | LitMetric

AI Article Synopsis

  • * Researchers enhanced the thermal properties of epoxy composites by integrating vertically aligned graphene onto metal surfaces using a specialized deposition method, resulting in a unique sandwich structure of copper and epoxy.
  • * Experimental results show that this new composite significantly improved thermal conductivity, with a remarkable 1215% enhancement, and simulations indicate that the vertically aligned graphene optimizes heat transfer efficiency.

Article Abstract

The escalating demands for miniaturization, integration, and portability in electronic devices have underscored the criticality of efficient heat dissipation. The utilization of high-performance thermal interface materials (TIMs) to fill the gaps between contacting surfaces holds significant potential for enhancing heat transfer efficiency. Herein, we successfully enhance the thermal properties of the epoxy composite TIM by integrating grown vertically aligned graphene on the metal surface using radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). To investigate the effect of vertical graphene on epoxy, the sandwich structure of copper/vertical graphene-epoxy/copper (Cu/VG-EP/Cu) is fabricated by incorporating epoxy resin. The experimental results demonstrate that the thermal conductivity of VG-EP reaches 2.06 W m K and achieves an impressive 1215% maximum enhancement. Furthermore, the numerical simulation findings show that vertical graphene consistent with the temperature gradient exhibits the highest heat transfer efficiency. This work presents an in-depth study of vertically aligned graphene within the epoxy resin, highlighting the advantages of vertically aligned fillers and offering novel perspectives for the advancement of TIMs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp02674hDOI Listing

Publication Analysis

Top Keywords

vertically aligned
16
aligned graphene
12
thermal interface
8
heat transfer
8
transfer efficiency
8
vertical graphene
8
graphene epoxy
8
epoxy resin
8
epoxy
5
graphene
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: