Renal-Clearable Organic Probes From D-A-D Type Aza-BODIPY Fluorophores for Multiphoton Deep-Brain Imaging.

Small

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.

Published: December 2024

Bright near-infrared (NIR) fluorescent probes play an important role in in vivo optical imaging. Here, renal-clearable nanodots prepared from Aza-BODIPY are reported fluorophores for multiphoton brain imaging. The design of donor-acceptor-donor (D-A-D) type conjugated structures endowed the fluorophores with large three-photon absorption cross-section for both 1620 and 2200 nm excitation. The side chain modification and lipid encapsulation yield ultrasmall nanodots (≈4 nm) and a high fluorescence quantum yield (≈0.35) at 720 nm emission in the aqueous phase. The measured three-photon action cross-section of a single Aza-BODIPY fluorophore in the nanodots is ≈30 times higher than the commonly used Sulforhodamine 101 dye. Three-photon deep brain imaging of subcortical structures is demonstrated, reaching a depth of 1900 µm below the brain surface in a live mouse study. The nanodots enabled blood flow measurement at a depth of 1617 µm using line scanning three-photon microscopy (3PM). This work provides superior fluorescent probes for multiphoton deep-brain imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202403994DOI Listing

Publication Analysis

Top Keywords

d-a-d type
8
fluorophores multiphoton
8
multiphoton deep-brain
8
deep-brain imaging
8
fluorescent probes
8
brain imaging
8
imaging
5
renal-clearable organic
4
organic probes
4
probes d-a-d
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!