A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhlrl7k8pbgupd8u59j1rg78iq3nk4587): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-Responsive MnO-Loaded Carbonaceous Nanobottle Motors Fabricated by Interfacial Superassembly for On-The-Fly MicroRNA Sensing. | LitMetric

AI Article Synopsis

  • Researchers have developed dual-responsive MnO-loaded carbonaceous nanobottle motors (MnO NBMs) that can move in response to different stimuli, enhancing motion control for various applications.* -
  • These nanomotors are combined with functional nanoparticles and hairpin DNA to create swimming functional MnO NBMs for improved targeting of miRNA, which is crucial for biological sensing.* -
  • The integration of these nanomotors with photoelectrochemical biosensors allows for sensitive and rapid detection of microRNA-155, demonstrating effective automation and potential for practical use in cancer diagnostics.*

Article Abstract

Diverse nanomotors with advanced motion manipulation have been proposed to revolutionize the way problems in many fields are solved. However, rational and controllable synthetic methods of multifunctional nanomotor are still limited. Herein, dual-responsive MnO-loaded carbonaceous nanobottle motors (MnO NBMs) are developed through an interfacial superassembly strategy. Asymmetric carbonaceous nanobottles are first synthesized, and the reductive carbonaceous shell induces an oxidation-reduction reaction with KMnO for in-situ growth of MnO nanosheets, which enables the nanomotor to perform either self-diffusiophoretic or self-thermophoretic motion in response to HO and near-infrared light, respectively. Inspired by bioaffinity sensing, the nanomotors are sequentially assembled with functional nanoparticles and hairpin DNA to construct swimming functional MnO NBMs (MnO FNBMs) probes. The probes can move around complex samples to improve target miRNA transport and accelerate receptor-target interaction. Coupling with the photocurrent-signal amplification, the self-assembly of photoelectrochemical (PEC) biosensors has been achieved for sensitive microRNA detection. Trace amounts of miRNA-155 can be quickly detected with a wide detection range (100 fM to 100 nM). Moreover, the direct detection of microRNA in tumor cell lysates by the biosensor is demonstrated. Given the merits of automation and miniaturization, the proposed strategy provides a promising method for fast and effective self-assembly of biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202404703DOI Listing

Publication Analysis

Top Keywords

dual-responsive mno-loaded
8
mno-loaded carbonaceous
8
carbonaceous nanobottle
8
nanobottle motors
8
interfacial superassembly
8
mno nbms
8
carbonaceous
4
motors fabricated
4
fabricated interfacial
4
superassembly on-the-fly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!