A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Construction of a metabolism-malnutrition-inflammation prognostic risk score in patients with heart failure with preserved ejection fraction: a machine learning based Lasso-Cox model. | LitMetric

Construction of a metabolism-malnutrition-inflammation prognostic risk score in patients with heart failure with preserved ejection fraction: a machine learning based Lasso-Cox model.

Nutr Metab (Lond)

State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167 Beilishi Road, Beijing, 10037, China.

Published: September 2024

Background: Metabolic disorder, malnutrition and inflammation are involved and interplayed in the mechanisms of heart failure with preserved ejection fraction (HFpEF). We aimed to construct a Metabolism-malnutrition-inflammation score (MIS) to predict the risk of death in patients with HFpEF.

Methods: We included patients diagnosed with HFpEF and without infective or systemic disease. 20 biomarkers were filtered by the Least absolute shrinkage and selection operator (Lasso)-Cox regression. 1000 times bootstrapping datasets were generated to select biomarkers that appeared above 95% frequency in repetitions to construct the MIS.

Results: Among 1083 patients diagnosed with HFpEF, 342 patients (31.6%) died during a median follow-up period of 2.5 years. The MIS was finally constructed based on 6 biomarkers, they were albumin (ALB), red blood cell distribution width-standard deviation (RDW-SD), high-sensitivity C-reactive protein (hs-CRP), lymphocytes, triiodothyronine (T3) and uric acid (UA). Incorporating MIS into the basic predictive model significantly increased both discrimination (∆C-index = 0.034, 95% CI 0.013-0.050) and reclassification (IDI, 6.6%, 95% CI 4.0%-9.5%; NRI, 22.2% 95% CI 14.4%-30.2%) in predicting all-cause mortality. In the time-dependent receiver operating characteristic (ROC) analysis, the mean area under the curve (AUC) for the MIS was 0.778, 0.782 and 0.772 at 1, 3, and 5 years after discharge in the cross-validation sets. The MIS was independently associated with all-cause mortality (hazard ratio: 1.98, 95% CI [1.70-2.31], P < 0.001).

Conclusions: A risk score derived from 6 commonly used inflammatory, nutritional, thyroid and uric acid metabolic biomarkers can effectively identify high-risk patients with HFpEF, providing potential individualized management strategies for patients with HFpEF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443858PMC
http://dx.doi.org/10.1186/s12986-024-00856-2DOI Listing

Publication Analysis

Top Keywords

heart failure
8
failure preserved
8
preserved ejection
8
ejection fraction
8
patients diagnosed
8
diagnosed hfpef
8
all-cause mortality
8
patients
5
mis
5
95%
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!