Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionnv0h8v1r6dtsc9g06le4hge5q098f3hn): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrogels are promising candidates for the delivery of therapeutics in the treatment of human cancers. Regarding to the biocomaptiiblity, high drug and encapsulation efficacy and adjustable physico-chemical features, the hydrogels have been widely utilized for the delivery of chemotherapy drugs. Doxorubicin (DOX) is one of the most common chemotherapy drugs used in cancer therapy through impairing topoisomerase II function and increasing oxidative damage. However, the tumor cells have developed resistance into DOX-mediated cytotoxic impacts, requiring the delivery systems to increase internalization and anti-cancer activity of this drug. The hydrogels can deliver DOX in a sustained manner to maximize its anti-cancer activity, improving cancer elimination and reduction in side effects and drug resistance. The natural-based hydrogels such as chitosan, alginate and gelatin hydrogels have shown favourable biocompatibility and degradability in DOX delivery for tumor suppression. The hydrogels are able to co-deliver DOX with other drugs or genes to enhance drug sensitivity and mediate polychemotherapy, synergistically suppressing cancer progression. The incorporation of nanoparticles in the structure of hydrogels can improve the sustained release of DOX and enhancing intracellular internalization, accelerating DOX's cytotoxicity. Furthermore, the stimuli-responsive hydrogels including pH-, redox- and thermo-sensitive platforms are able to improve the specific release of DOX at the tumor site. The DOX-loaded hydrogels can be further employed in the clinic for the treatment of cancer patients and improving efficacy of chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440768 | PMC |
http://dx.doi.org/10.1186/s12967-024-05490-3 | DOI Listing |
Small
December 2024
Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China.
Traditional microneedle (MN) technology offers unique advantages in treating wound infections; however, its single-function design lacks the capability for real-time monitoring of wound conditions, often resulting in uncontrolled drug release. Herein, an anti-infective and intelligent MN patch (SP-CSMN) integrating three functional modules is developed, including temperature monitoring, Bluetooth wireless communication, and responsive drug release. The patch employed chitosan (CS) as a porous substrate, filled with temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) to encapsulate and release the antibiotic rifampicin.
View Article and Find Full Text PDFLett Appl Microbiol
December 2024
Amrita School for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi-682041, India.
Mycobacterium marinum is a slow growing Non-Tuberculosis Mycobacteria (NTM) known to cause skin and subcutaneous tissue infections known as "fish tank granuloma" in humans. Treatment of M. marinum skin infections can last for several months or even years.
View Article and Find Full Text PDFInt J Pharm
December 2024
Université de Lorraine, CITHEFOR, F-54000 Nancy, France. Electronic address:
As the main protein forming the vascular extracellular matrix, collagen has a weak antigenicity, making it an attractive candidate for coatings of vascular grafts. In order to bring antithrombotic properties to collagen for obtaining suitable blood compatibility of surfaces and further bioactive molecule carrying capacity, heparinization appears as a method of choice. Thus, in this article, pH-driven self-assembly was used to form collagen-based hydrogels with physical incorporation of heparins, especially low molecular weight heparin or unfractionated heparin at 1 IU/mL and 6 IU/mL.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China. Electronic address:
Adhesive hydrogels have been widely studied as wound dressings due to their excellent biocompatibility and biological activity. However, most designed hydrogels still exist limitations including potentially toxic monomer, complex preparation process and non-degradable property. Here, a natural and degradable gelatin/casein hydrogel was prepared by enzymatic cross-linking.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Tissue Regeneration, Soonchunhyang University, Cheonan 31151, Republic of Korea; Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea.
Although hemostatic powders are commonly used in clinical and emergency settings, they frequently show poor absorption, raise cytotoxicity issues, and are not effective for fatal non-compressible bleeding. The purpose of this research is to create a self-gelling hemostatic powder based on chitosan, bentonite, and sodium polyacrylate (CBS) to improve the hemostatic effect. When liquid comes into contact with CBS powders, they can fuse and form a stable hydrogel in less than 30s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!