Antibiotic residues have become a significant challenge in food safety, threatening both ecosystem integrity and human health. To combat this problem, we developed an innovative photo-powered, self-powered aptasensor that employs a novel carbon-doped three-dimensional graphitic carbon nitride (3D-CN) combined with a metal-organic framework composed of N-doped copper(I) oxide-carbon (CuO@C) skeletons. The 3D-CN serves as the photoanode, offering stable photocurrent production due to its three-dimensional open framework structure. The N-doped CuO@C acts as the photocathode, providing oxidation protection for the metal core and enhancing light absorption due to its metal-organic framework structure. A key feature of our work is exploiting the Fermi level difference between the n-type photoanode and p-type photocathode, which facilitates faster migration of photogenerated electrons toward the photocathode, thereby enhancing the sensor's self-powered effect. Experimental results reveal that upon aptamer loading, the sensor can linearly detect tetracycline (TC) within a range of 0.5 pmol/L to 300 nmol/L, with a detection limit as low as 0.13 pmol/L. It also demonstrates excellent selectivity, stability, and reproducibility, making it applicable to real samples such as milk and river water. Consequently, our research provides a highly efficient and sensitive method for monitoring TC in food, with significant practical implications and profound impacts on food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.17398DOI Listing

Publication Analysis

Top Keywords

food safety
8
metal-organic framework
8
framework structure
8
self-powered photoelectrochemical
4
photoelectrochemical aptasensor
4
aptasensor 3d-carbon
4
3d-carbon nitride
4
nitride carbon-based
4
carbon-based metal-organic
4
metal-organic frameworks
4

Similar Publications

Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region.

View Article and Find Full Text PDF

Case of Fatal Hepatitis Related to HEV-3 Infection in Central Italy.

Viruses

November 2024

Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.

Hepatitis E virus (HEV) is a global health problem, causing an estimated 20 million infections annually. Thus, the management of HEV requires special consideration. In developed countries, hepatitis E is mainly recognized as a foodborne disease (mainly transmitted via undercooked meat consumption) that is generally caused by genotype 3 and 4 circulating in various animals, including pigs and wild boars.

View Article and Find Full Text PDF

Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.

View Article and Find Full Text PDF

Efficiency of Bacteriophage-Based Detection Methods for Non-Typhoidal in Foods: A Systematic Review.

Viruses

November 2024

Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland's Rural College, Inverness IV2 5NA, UK.

Food contamination with non-typhoidal (NTS) presents a significant public health risk, underscoring the critical need for rigorous food safety measures throughout the production, distribution, preparation, and consumption stages. Conventional diagnostic strategies are time-consuming and labor-intensive and are thus sub-optimal for throughput NTS detection. Bacteriophages (phages) are highly specialized bacterial viruses and exhibit extreme specificity for their hosts.

View Article and Find Full Text PDF

Background/objectives: The ongoing COVID-19 pandemic has underscored the need for alternative prophylactic measures, particularly for populations for whom vaccines may not be effective or accessible. This study aims to evaluate the efficacy of intranasally administered IgY antibodies derived from hen egg yolks as a protective agent against SARS-CoV-2 infection in Syrian golden hamsters, a well-established animal model for COVID-19.

Methods: Hens were immunized with the spike protein of SARS-CoV-2 to generate IgY antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!