Spatio-temporal variations and multi-scenario simulation of landscape ecological risk in the drylands of the Yellow River Basin.

Sci Rep

Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, 015200, China.

Published: September 2024

AI Article Synopsis

  • The Yellow River Basin has seen significant shifts in land use and ecological dynamics from 2000 to 2020, with more built-up, forest, grassland, and water areas, while unused land and cropland have decreased.
  • Ecological risk levels in the basin showed spatial diversity, with high-risk regions in the western Inner Mongolia Plateau, but overall risk decreased over two decades, influenced mainly by water resources and human activities.
  • Future development scenarios suggest a further reduction in ecological risk by 2030, especially with an Ecological Priority Scenario, highlighting the need for tailored land use policies and improved ecological management practices.

Article Abstract

Over the past decades, the drylands of the Yellow River Basin (YRBD) have undergone profound changes in landscape patterns and ecological dynamics, significantly impacting regional sustainable development. To assess the spatio-temporal variations of ecological risk in the YRBD and provide guidance for sustainable regional development, we constructed a coupled Land Use-Landscape Ecological Risk Model-Geographical Detector-PLUS framework for the assessment, analysis, and simulation of dryland landscape ecological risk (LER). The main findings are as follows: (1) Between 2000 and 2020, the area of built-up land, forest, grassland, and water in the YRBD increased, while the area of unused land and cropland decreased. (2) LER exhibited significant spatial heterogeneity, dominated by Sub-low and Low risks. High risk areas were primarily located in the western Inner Mongolia Plateau, whereas Low risk areas were prevalent in the Loess Plateau, with an overall decline in risk levels over the 20 years. (3) Water resources, ecological status, and human activities are the main driving factors affecting LER, with the impact of human activities becoming increasingly significant over the past 20 years. (4) Under three development scenarios in 2030, the LER is projected to further decrease, although the impact of these scenarios varies across different research sub-regions. Notably, the Ecological Priority Scenario emerges as more effective in mitigating regional LER. (5) Developing precise land use policies tailored to regional characteristics, continuously implementing ecological restoration projects, strengthening water resource management, and enhancing monitoring capabilities are effective ways to reduce LER in the YRBD. This study systematically quantified the impact of different development scenarios on LER in the YRBD, revealing its spatio-temporal characteristics, and emphasized the importance of planning guidance, ecological restoration, and risk monitoring to align regional development with ecological protection. The findings provide scientific evidence for ecological protection and sustainable development in the YRBD and other drylands, offering valuable insights for global dryland ecological risk management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442452PMC
http://dx.doi.org/10.1038/s41598-024-73764-3DOI Listing

Publication Analysis

Top Keywords

ecological risk
20
ecological
12
risk
9
spatio-temporal variations
8
landscape ecological
8
drylands yellow
8
yellow river
8
river basin
8
sustainable development
8
regional development
8

Similar Publications

Background: Pulmonary space-occupying lesions are typical chronic pulmonary diseases that contribute significantly to healthcare resource use and impose a large disease burden in China. A time-series ecological trend study was conducted to investigate the associations between environmental factors and hospitalizations for pulmonary space-occupying lesions in North of China from 2014 to 2022.

Methods: The DLNM was used to quantify the association of environmental factors with lung cancer admissions.

View Article and Find Full Text PDF

Excessive total suspended matter (TSM) concentrations can exert a considerable impact on the growth of aquatic organisms in fishponds, representing a significant risk to aquaculture health. This study revised existing unified models using empirical data to develop an optimized TSM retrieval model tailored for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (R = 0.69, RMSE = 7.

View Article and Find Full Text PDF

Morphological patterns of the European bison (Bison bonasus) skull.

Sci Rep

January 2025

Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776, Warsaw, Poland.

This study aimed to investigate the effects of environmental factors, sexual selection, and genetic variation on skull morphology by examining the skull structure of the European bison, a species at risk of extinction, and comparing it to other bovid species. The skull of the European bison was significantly bigger than that of other species of the tribe Bovini, and the results revealed considerable morphological differences in skull shape compared to other Bovini samples. The bison skull exhibited a broader shape in the frontal region and a more laterally oriented cornual process.

View Article and Find Full Text PDF

Driving force analysis and multi-scenario simulation of landscape ecological risk in the Jianghan Plain, China.

Sci Rep

January 2025

Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi, 445000, Hubei Province, China.

As a key food production base, land use changes in the Jianghan Plain (JHP) significantly affect the surface landscape structure and ecological risks, posing challenges to food security. Assessing the ecological risk of the JHP, identifying its drivers, and predicting the risk trends under different scenarios can provide strategic support for ecological risk management and safeguarding food security in the JHP. In this study, the landscape ecological risk (LER) index was constructed by integrating landscape indices from 2000 to 2020, firstly analyzing its spatiotemporal characteristics, subsequently identifying the key influencing factors by using the GeoDetector model, and finally, simulating the risk changes under the four scenarios by using the Markov-PLUS model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!