Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultra-wideband (UWB) technology is extensively used in indoor navigation, medical applications, and Internet of Things devices due to its low power consumption and resilience against multipath fading and losses. This paper examines a multiple-input multiple-output (MIMO), circularly polarized (CP) dielectric resonator antenna for UWB systems. Compact form factor, high gain, wideband response, improved port isolation, and high data rates are the major design goals. This arrangement consists of two identical DRAs with self-decoupled orthogonal orientations eliminating the need for extra decoupling structures while achieving an impressive maximum isolation of 43 dB. The corner-edge feeding mechanism of the extended feedline generates two orthogonal E-fields, facilitating circular polarization. Additionally, a printed hook-shaped stub integrated with the ground plane enhances CP performance across the two operating bands without altering the DR structure. Fabrication and testing exhibit an impressive 133 impedance bandwidth (2.5-14 GHz) with high port isolation. For a 3 dB axial ratio reference, the single-element design exhibits axial ratio bandwidths (ARBW) of 1.2 GHz (3.6-4.8 GHz) and 0.8 GHz (9.3-10.1 GHz). Remarkably, the MIMO configuration achieves a single ARBW of 0.5 GHz (3.9-4.4 GHz). Detailed investigations of MIMO performance parameters, including diversity gain, envelope correlation coefficient, channel capacity loss, and total active reflection coefficient, underscore the design's efficacy, making it a good choice for UWB wireless applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442867 | PMC |
http://dx.doi.org/10.1038/s41598-024-73282-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!