Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a fuzzy model is presented for predicting the possibility of degradation due to salt crystallisation cycles. The formalization of the proposed model has been based on the multivariable approach which considers environmental data (such as temperature, solar radiation, wind speed, rain quantity, relative humidity), characteristic inflection points of specific salts and stone features derived from laboratory characterizations (including mechanical properties, porosity, and mineralogical composition). Modeling results have been compared with experimental data elaborations acquired by monitoring a semi-confined archaeological site situated in the city of Cagliari (Munatius Irenaus cubicle), revealing substantial alignment in the degradation kinetics trends. Moreover, the achieved outcomes show the remarkable capability to identify salt crystallisation phenomenon type (efflorescence or subflorescence).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442969 | PMC |
http://dx.doi.org/10.1038/s41598-024-73192-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!