Throughout evolution, protein families undergo substantial sequence divergence while preserving structure and function. Although most mutations are deleterious, evolution can explore sequence space via epistatic networks of intramolecular interactions that alleviate the harmful mutations. However, comprehensive analysis of such epistatic networks across protein families remains limited. Thus, we conduct a family wide analysis of the B1 metallo-β-lactamases, combining experiments (deep mutational scanning, DMS) on two distant homologs (NDM-1 and VIM-2) and computational analyses (in silico DMS based on Direct Coupling Analysis, DCA) of 100 homologs. The methods jointly reveal and quantify prevalent epistasis, as ~1/3rd of equivalent mutations are epistatic in DMS. From DCA, half of the positions have a >6.5 fold difference in effective number of tolerated mutations across the entire family. Notably, both methods locate residues with the strongest epistasis in regions of intermediate residue burial, suggesting a balance of residue packing and mutational freedom in forming epistatic networks. We identify entrenched WT residues between NDM-1 and VIM-2 in DMS, which display statistically distinct behaviors in DCA from non-entrenched residues. Entrenched residues are not easily compensated by changes in single nearby interactions, reinforcing existing findings where a complex epistatic network compounds smaller effects from many interacting residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442494PMC
http://dx.doi.org/10.1038/s41467-024-52614-wDOI Listing

Publication Analysis

Top Keywords

epistatic networks
16
deep mutational
8
mutational scanning
8
protein families
8
ndm-1 vim-2
8
entrenched residues
8
epistatic
5
residues
5
understanding epistatic
4
networks
4

Similar Publications

Genome-wide association study of rice (Oryza sativa L.) inflorescence architecture.

Plant Sci

January 2025

Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.

Rice yield strongly depends on panicle size and architecture but the genetics underlying these traits and their coordination with environmental cues through various signaling pathways have remained elusive. A genome-wide association study (GWAS) was performed to pinpoint the underlying genetic determinants for rice panicle architecture by analyzing 20 panicle-related traits using a data set consisting of 44,100 SNPs. We defined QTL windows around significant SNPs by the rate of LD decay for each chromosome and used these windows to identify putative candidate genes associated with the trait.

View Article and Find Full Text PDF

Genetic interaction network of quantitative trait genes for heading date in rice.

J Genet Genomics

January 2025

Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China. Electronic address:

Several quantitative trait genes (QTGs) related to rice heading date, a key factor for crop development and yield, have been identified, along with complex interactions among genes. However, a comprehensive genetic interaction network for these QTGs has not yet been established. In this study, we use 18K-rice lines to identify QTGs and their epistatic interactions affecting rice heading date.

View Article and Find Full Text PDF

Background: Epistasis, the phenomenon where the effect of one gene (or variant) is masked or modified by one or more other genes, significantly contributes to the phenotypic variance of complex traits. Traditionally, epistasis has been modeled using the Cartesian epistatic model, a multiplicative approach based on standard statistical regression. However, a recent study investigating epistasis in obesity-related traits has identified potential limitations of the Cartesian epistatic model, revealing that it likely only detects a fraction of the genetic interactions occurring in natural systems.

View Article and Find Full Text PDF

We present MoCHI, a tool to fit interpretable models using deep mutational scanning data. MoCHI infers free energy changes, as well as interaction terms (energetic couplings) for specified biophysical models, including from multimodal phenotypic data. When a user-specified model is unavailable, global nonlinearities (epistasis) can be estimated from the data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!