Prenatal adversity affects cognitive and brain aging. Both lipid and leptin concentrations may be involved. We investigated if prenatal undernutrition is associated with a specific blood lipid profile and/or leptin concentrations, and if these relate to cognitive function and brain aging. 801 plasma samples of members of the Dutch famine birth cohort were assessed for lipidomics and leptin at age 58. Cognitive performance was measured with a Stroop task at 58, and MRI-based BrainAGE was derived in a subsample at 68. Out of 259 lipid signals, a signature of five identified individuals who were undernourished prenatally. These five lipids were not associated with cognitive performance, but three were predictive of BrainAGE. Leptin was not associated with prenatal famine exposure, Stroop performance, or BrainAGE. In conclusion, prenatal undernutrition was associated with an altered lipid profile predictive of BrainAGE 10 years later, demonstrating the potential of lipid profiles as early biomarkers for accelerated brain aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442854PMC
http://dx.doi.org/10.1038/s41514-024-00169-xDOI Listing

Publication Analysis

Top Keywords

brain aging
16
undernutrition associated
12
lipid profile
12
associated specific
8
leptin concentrations
8
prenatal undernutrition
8
cognitive performance
8
predictive brainage
8
lipid
6
prenatal
5

Similar Publications

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases.

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

Cognitive impairments in chronic pain: a brain aging framework.

Trends Cogn Sci

January 2025

Key Laboratory of Cognitive Science and Mental Health, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Chronic pain (CP) not only causes physical discomfort but also significantly affects cognition. This review first summarizes emerging findings that reveal complex associations between CP and cognitive impairments, and then presents neuroimaging evidence showing aging-related brain alterations in CP and proposes a framework where accelerated brain aging links CP to cognitive impairments. This framework explains how CP-related multi-level factors, which either contribute to the onset of CP or arise as a result of CP, influence brain aging in linear and nonlinear ways, leading to cognitive impairments and increased dementia risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!