Tripartite motif-containing 37 (TRIM37) is reportedly a key member of the superfamily of TRIM proteins. Emerging evidence underscores the close association between dysregulated TRIM37 expression and the progression of various human malignancies. However, the precise biological functions and regulatory mechanisms of TRIM37 remain elusive. This study aimed to elucidate the impact of TRIM37 on the chemotherapy sensitivity of renal cell carcinoma (RCC) and uncover its specific molecular regulatory role. Using RT-qPCR and western blot assays, we assessed TRIM37 expression in both RCC patients and RCC cells. Through in vitro and in vivo experiments, we investigated the effects of TRIM37 silencing and overexpression on RCC cell proliferation, stemness capacity, and chemotherapy sensitivity using colony formation and sphere formation assays. Additionally, a co-immunoprecipitation (Co-IP) experiment was conducted to explore putative interacting proteins. Our results revealed elevated TRIM37 expression in both RCC patient tumor tissues and RCC cells. Functional experiments consistently demonstrated that TRIM37 silencing reduced proliferation and stemness capacity while enhancing chemotherapy sensitivity in RCC cells. Furthermore, we discovered that TRIM37 mediates the degradation of SMARCC2 via ubiquitin-proteasome pathways, thereby further activating the Wnt signaling pathway. In conclusion, this study not only sheds light on the biological role of TRIM37 in RCC progression but also identifies a potential molecular target for therapeutic intervention in RCC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442835 | PMC |
http://dx.doi.org/10.1038/s41420-024-02187-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!