A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly passivated TOPCon bottom cells for perovskite/silicon tandem solar cells. | LitMetric

Tunnel oxide passivated contact (TOPCon) silicon solar cells are rising as a competitive photovoltaic technology, seamlessly blending high efficiency with cost-effectiveness and mass production capabilities. However, the numerous defects from the fragile silicon oxide/c-Si interface and the low field-effect passivation due to the inadequate boron in-diffusion in p-type polycrystalline silicon (poly-Si) passivated contact reduce their open-circuit voltages (Vs), impeding their widespread application in the promising perovskite/silicon tandem solar cells (TSCs) that hold a potential to break 30% module efficiency. To address this, we have developed a highly passivated p-type TOPCon structure by optimizing the oxidation conditions, boron in-diffusion, and aluminium oxide hydrogenation, thus pronouncedly improving the implied V (iV) of symmetric samples with p-type TOPCon structures on both sides to 715 mV and the V of completed double-sided TOPCon bottom cells to 710 mV. Consequently, integrating with perovskite top cells, our proof of concept of 1 cm n-i-p perovskite/silicon TSCs exhibit Vs exceeding 1.9 V and a high efficiency of 28.20% (certified 27.3%), which paves a way for TOPCon cells in the commercialization of future tandems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442652PMC
http://dx.doi.org/10.1038/s41467-024-52309-2DOI Listing

Publication Analysis

Top Keywords

solar cells
12
highly passivated
8
topcon bottom
8
bottom cells
8
perovskite/silicon tandem
8
tandem solar
8
passivated contact
8
high efficiency
8
boron in-diffusion
8
p-type topcon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!